
OpenCV User Guide

v2.2

December, 2010

2

Contents

I C++ API Reference 5

1 cv::Mat. Basic operations with images. 7
1.1 Basic operations with images . 7

Input/Output . 7
Accessing pixel intensity values . 7
Memory management and reference counting . 8
Primitive operations . 9

Index 9

3

4 CONTENTS

Part I

C++ API Reference

5

Chapter 1

cv::Mat. Basic operations with images.

1.1 Basic operations with images

Input/Output
Load an image from a file:

Mat img = imread(filename);

If you read a jpg file, a 3 channel image is created by default. If you need a grayscale image, use:

Mat img = imread(filename, 0);

Save an image to a file:

Mat img = imwrite(filename);

Accessing pixel intensity values
In order to get pixel intensity value, you have to know the type of an image and the number
of channels. Here is an example for a single channel grey scale image (type 8UC1) and pixel
coordinates x and y:

Scalar intensity = img.at<uchar>(x, y);

intensity.val[0] contains a value from 0 to 255. Now let us consider a 3 channel image with
bgr color ordering (the default format returned by imread):

Vec3b intensity = img.at<Vec3b>(x, y);
uchar blue = intensity.val[0];
uchar green = intensity.val[1];
uchar red = intensity.val[2];

7

8 CHAPTER 1. CV::MAT. BASIC OPERATIONS WITH IMAGES.

You can use the same method for floating-point images (for example, you can get such an image
by running Sobel on a 3 channel image):

Vec3f intensity = img.at<Vec3f>(x, y);
float blue = intensity.val[0];
float green = intensity.val[1];
float red = intensity.val[2];

The same method can be used to change pixel intensities:

img.at<uchar>(x, y) = 128;

There are functions in OpenCV, especially from calib3d module, such as projectPoints,
that take an array of 2D or 3D points in the form of Mat. Matrix should contain exactly one column,
each row corresponds to a point, matrix type should be 32FC2 or 32FC3 correspondingly. Such a
matrix can be easily constructed from std::vector:

vector<Point2f> points;
//... fill the array
Mat pointsMat = Mat(points);

One can access a point in this matrix using the same method Mat::at:

Point2f point = pointsMat.at<Point2f>(i, 0);

Memory management and reference counting
Mat is a structure that keeps matrix/image characteristics (rows and columns number, data type
etc) and a pointer to data. So nothing prevents us from having several instances of Mat corre-
sponding to the same data. A Mat keeps a reference count that tells if data has to be deallocated
when a particular instance of Mat is destroyed. Here is an example of creating two matrices
without copying data:

std::vector<Point3f> points;
// .. fill the array
Mat pointsMat = Mat(points).reshape(1);

As a result we get a 32FC1 matrix with 3 columns instead of 32FC3 matrix with 1 column.
pointsMat uses data from points and will not deallocate the memory when destroyed. In
this particular instance, however, developer has to make sure that lifetime of points is longer
than of pointsMat. If we need to copy the data, this is done using, for example, Mat::copyTo
or Mat::clone:

Mat img = imread("image.jpg");
Mat img1 = img.clone();

1.1. BASIC OPERATIONS WITH IMAGES 9

To the contrary with C API where an output image had to be created by developer, an empty
output Mat can be supplied to each function. Each implementation calls Mat::create for a
destination matrix. This method allocates data for a matrix if it is empty. If it is not empty and has
the correct size and type, the method does nothing. If, however, size or type are different from
input arguments, the data is deallocated (and lost) and a new data is allocated. For example:

Mat img = imread("image.jpg");
Mat sobelx;
Sobel(img, sobelx, CV_32F, 1, 0);

Primitive operations
There is a number of convenient operators defined on a matrix. For example, here is how we can
make a black image from an existing greyscale image img:

img = Scalar(0);

Selecting a region of interest:

Rect r(10, 10, 100, 100);
Mat smallImg = img(r);

A convertion from Mat to C API data structures:

Mat img = imread("image.jpg");
IplImage img1 = img;
CvMat m = img;

Note that there is no data copying here.

	I C++ API Reference
	cv::Mat. Basic operations with images.
	Basic operations with images
	Input/Output
	Accessing pixel intensity values
	Memory management and reference counting
	Primitive operations

	Index

