#!/usr/bin/env python ''' This sample detects the query person in the given video file. Authors of samples and Youtu ReID baseline: Xing Sun Feng Zheng Xinyang Jiang Fufu Yu Enwei Zhang Copyright (C) 2020-2021, Tencent. Copyright (C) 2020-2021, SUSTech. Copyright (C) 2024, Bigvision LLC. How to use: sample command to run: `python person_reid.py` You can download ReID model using `python download_models.py reid` and yolo model using: `python download_models.py yolov8` Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data. ''' import argparse import os.path import numpy as np import cv2 as cv from common import * def help(): print( ''' Use this script for Person Re-identification using OpenCV. Firstly, download required models i.e. reid and yolov8 using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data. To run: Example: python person_reid.py reid Re-identification model path can also be specified using --model argument and detection model can be specified using --yolo_model argument. ''' ) def get_args_parser(): backends = ("default", "openvino", "opencv", "vkcom", "cuda") targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16") parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'), help='An optional path to file with preprocessing parameters.') parser.add_argument('--query', '-q', help='Path to target image. Skip this argument to select target in the video frame.') parser.add_argument('--input', '-i', default=0, help='Path to video file.', required=False) parser.add_argument('--backend', default="default", type=str, choices=backends, help="Choose one of computation backends: " "default: automatically (by default), " "openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "opencv: OpenCV implementation, " "vkcom: VKCOM, " "cuda: CUDA, " "webnn: WebNN") parser.add_argument('--target', default="cpu", type=str, choices=targets, help="Choose one of target computation devices: " "cpu: CPU target (by default), " "opencl: OpenCL, " "opencl_fp16: OpenCL fp16 (half-float precision), " "ncs2_vpu: NCS2 VPU, " "hddl_vpu: HDDL VPU, " "vulkan: Vulkan, " "cuda: CUDA, " "cuda_fp16: CUDA fp16 (half-float preprocess)") args, _ = parser.parse_known_args() add_preproc_args(args.zoo, parser, 'person_reid', prefix="", alias="reid") add_preproc_args(args.zoo, parser, 'person_reid', prefix="yolo_", alias="reid") parser = argparse.ArgumentParser(parents=[parser], description='Person Re-identification using OpenCV.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) return parser.parse_args() img_dict = {} # Dictionary to store bounding boxes for corresponding cropped image def yolo_detector(frame, net): global img_dict height, width, _ = frame.shape length = max((height, width)) image = np.zeros((length, length, 3), np.uint8) image[0:height, 0:width] = frame scale = length/args.yolo_width # Create blob from the frame with correct scale factor and size for the model blob = cv.dnn.blobFromImage(image, scalefactor=args.yolo_scale, size=(args.yolo_width, args.yolo_height), swapRB=args.yolo_rgb) net.setInput(blob) outputs = net.forward() outputs = np.array([cv.transpose(outputs[0])]) rows = outputs.shape[1] boxes = [] scores = [] class_ids = [] for i in range(rows): classes_scores = outputs[0][i][4:] (_, maxScore, _, (x, maxClassIndex)) = cv.minMaxLoc(classes_scores) if maxScore >= 0.25: box = [ outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]), outputs[0][i][2], outputs[0][i][3], ] boxes.append(box) scores.append(maxScore) class_ids.append(maxClassIndex) # Apply Non-Maximum Suppression indexes = cv.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5) images = [] for i in indexes: x, y, w, h = boxes[i] x = round(x*scale) y = round(y*scale) w = round(w*scale) h = round(h*scale) x, y = max(0, x), max(0, y) w, h = min(w, frame.shape[1] - x), min(h, frame.shape[0] - y) crop_img = frame[y:y+h, x:x+w] images.append(crop_img) img_dict[crop_img.tobytes()] = (x, y, w, h) return images def extract_feature(images, net): """ Extract features from images :param images: the input images :param net: the model network """ feat_list = [] # net = reid_net.copy() for img in images: blob = cv.dnn.blobFromImage(img, scalefactor=args.scale, size=(args.width, args.height), mean=args.mean, swapRB=args.rgb, crop=False, ddepth=cv.CV_32F) for j in range(blob.shape[1]): blob[:, j, :, :] /= args.std[j] net.setInput(blob) feat = net.forward() feat = np.reshape(feat, (feat.shape[0], feat.shape[1])) feat_list.append(feat) feats = np.concatenate(feat_list, axis = 0) return feats def find_matching(query_feat, gallery_feat): """ Return the index of the gallery image most similar to the query image :param query_feat: array of feature vectors of query images :param gallery_feat: array of feature vectors of gallery images """ cv.normalize(query_feat, query_feat, 1.0, 0.0, cv.NORM_L2) cv.normalize(gallery_feat, gallery_feat, 1.0, 0.0, cv.NORM_L2) sim = query_feat.dot(gallery_feat.T) index = np.argmax(sim, axis=1)[0] return index def main(): if hasattr(args, 'help'): help() exit(1) args.model = findModel(args.model, args.sha1) if args.yolo_model is None: print("[ERROR] Please pass path to yolov8.onnx model file using --yolo_model.") exit(1) else: args.yolo_model = findModel(args.yolo_model, args.yolo_sha1) engine = cv.dnn.ENGINE_AUTO if args.backend != "default" or args.backend != "cpu": engine = cv.dnn.ENGINE_CLASSIC yolo_net = cv.dnn.readNetFromONNX(args.yolo_model, engine) reid_net = cv.dnn.readNetFromONNX(args.model, engine) reid_net.setPreferableBackend(get_backend_id(args.backend)) reid_net.setPreferableTarget(get_target_id(args.target)) cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0) query_images = [] stdSize = 0.6 stdWeight = 2 stdImgSize = 512 imgWidth = -1 # Initialization fontSize = 1.5 fontThickness = 1 if args.query: query_images = [cv.imread(findFile(args.query))] else: while True: ret, image = cap.read() if not ret: print("Error reading the video") return -1 if imgWidth == -1: imgWidth = min(image.shape[:2]) fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize) fontThickness = max(fontThickness,(stdWeight*imgWidth)//stdImgSize) label = "Press space bar to pause video to draw bounding box." labelSize, _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness) cv.rectangle(image, (0, 0), (labelSize[0]+10, labelSize[1]+int(30*fontSize)), (255,255,255), cv.FILLED) cv.putText(image, label, (10, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness) cv.putText(image, "Press space bar after selecting.", (10, int(50*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness) cv.imshow('TRACKING', image) key = cv.waitKey(100) & 0xFF if key == ord(' '): rect = cv.selectROI("TRACKING", image) if rect: x, y, w, h = rect query_image = image[y:y + h, x:x + w] query_images = [query_image] break if key == ord('q') or key == 27: return query_feat = extract_feature(query_images, reid_net) while cap.isOpened(): ret, frame = cap.read() if not ret: break if imgWidth == -1: imgWidth = min(frame.shape[:2]) fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize) fontThickness = max(fontThickness,(stdWeight*imgWidth)//stdImgSize) images = yolo_detector(frame, yolo_net) gallery_feat = extract_feature(images, reid_net) match_idx = find_matching(query_feat, gallery_feat) match_img = images[match_idx] x, y, w, h = img_dict[match_img.tobytes()] cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) cv.putText(frame, "Target", (x, y - 10), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 255), fontThickness) label="Tracking" labelSize, _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness) cv.rectangle(frame, (0, 0), (labelSize[0]+10, labelSize[1]+10), (255,255,255), cv.FILLED) cv.putText(frame, label, (10, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness) cv.imshow("TRACKING", frame) if cv.waitKey(1) & 0xFF in [ord('q'), 27]: break cap.release() cv.destroyAllWindows() return if __name__ == '__main__': args = get_args_parser() main()