# Script is based on https://github.com/richzhang/colorization/blob/master/colorization/colorize.py # To download the onnx model, see: https://storage.googleapis.com/ailia-models/colorization/colorizer.onnx # python colorization.py --onnx_model_path colorizer.onnx --input ansel_adams3.jpg import numpy as np import argparse import cv2 as cv import numpy as np def parse_args(): backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA) targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16) parser = argparse.ArgumentParser(description='iColor: deep interactive colorization') parser.add_argument('--input', default='baboon.jpg',help='Path to image.') parser.add_argument('--onnx_model_path', help='Path to onnx model', required=True) parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, help="Choose one of computation backends: " "%d: automatically (by default), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "%d: OpenCV implementation, " "%d: VKCOM, " "%d: CUDA" % backends) parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, help='Choose one of target computation devices: ' '%d: CPU target (by default), ' '%d: OpenCL, ' '%d: OpenCL fp16 (half-float precision), ' '%d: NCS2 VPU, ' '%d: HDDL VPU, ' '%d: Vulkan, ' '%d: CUDA, ' '%d: CUDA fp16 (half-float preprocess)'% targets) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() img_gray=cv.imread(cv.samples.findFile(args.input),cv.IMREAD_GRAYSCALE) img_gray_rs = cv.resize(img_gray, (256, 256), interpolation=cv.INTER_CUBIC) img_gray_rs = img_gray_rs.astype(np.float32) # Convert to float to avoid data overflow img_gray_rs *= (100.0 / 255.0) # Scale L channel to 0-100 range onnx_model_path = args.onnx_model_path # Update this path to your ONNX model's path engine = cv.dnn.ENGINE_AUTO if args.backend != 0 or args.target != 0: engine = cv.dnn.ENGINE_CLASSIC session = cv.dnn.readNetFromONNX(onnx_model_path, engine) session.setPreferableBackend(args.backend) session.setPreferableTarget(args.target) # Process each image in the batch (assuming batch processing is needed) blob = cv.dnn.blobFromImage(img_gray_rs, swapRB=False) # Adjust swapRB according to your model's training session.setInput(blob) result_numpy = np.array(session.forward()[0]) if result_numpy.shape[0] == 2: # Transpose result_numpy to shape (H, W, 2) ab = result_numpy.transpose((1, 2, 0)) else: # If it's already (H, W, 2), assign it directly ab = result_numpy # Resize ab to match img_gray's dimensions if they are not the same h, w = img_gray.shape if ab.shape[:2] != (h, w): ab_resized = cv.resize(ab, (w, h), interpolation=cv.INTER_LINEAR) else: ab_resized = ab # Expand dimensions of L to match ab's dimensions img_l_expanded = np.expand_dims(img_gray, axis=-1) # Concatenate L with AB to get the LAB image lab_image = np.concatenate((img_l_expanded, ab_resized), axis=-1) # Convert the Lab image to a 32-bit float format lab_image = lab_image.astype(np.float32) # Normalize L channel to the range [0, 100] and AB channels to the range [-127, 127] lab_image[:, :, 0] *= (100.0 / 255.0) # Rescale L channel #lab_image[:, :, 1:] -= 128 # Shift AB channels # Convert the LAB image to BGR image_bgr_out = cv.cvtColor(lab_image, cv.COLOR_Lab2BGR) cv.imshow("input image",img_gray) cv.imshow("output image",image_bgr_out) cv.waitKey(0)