/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include #include #include "opencv2/core/hal/intrin.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/openvx/ovx_defs.hpp" #include "filter.hpp" #include "opencv2/core/softfloat.hpp" namespace cv { #include "fixedpoint.inl.hpp" } #include "smooth.simd.hpp" #include "smooth.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content namespace cv { /****************************************************************************************\ Gaussian Blur \****************************************************************************************/ /** * Bit-exact in terms of softfloat computations * * returns sum of kernel values. Should be equal to 1.0 */ static softdouble getGaussianKernelBitExact(std::vector& result, int n, double sigma) { CV_Assert(n > 0); //TODO: incorrect SURF implementation requests kernel with n = 20 (PATCH_SZ): https://github.com/opencv/opencv/issues/15856 //CV_Assert((n & 1) == 1); // odd if (sigma <= 0) { if (n == 1) { result = std::vector(1, softdouble::one()); return softdouble::one(); } else if (n == 3) { softdouble v3[] = { softdouble::fromRaw(0x3fd0000000000000), // 0.25 softdouble::fromRaw(0x3fe0000000000000), // 0.5 softdouble::fromRaw(0x3fd0000000000000) // 0.25 }; result.assign(v3, v3 + 3); return softdouble::one(); } else if (n == 5) { softdouble v5[] = { softdouble::fromRaw(0x3fb0000000000000), // 0.0625 softdouble::fromRaw(0x3fd0000000000000), // 0.25 softdouble::fromRaw(0x3fd8000000000000), // 0.375 softdouble::fromRaw(0x3fd0000000000000), // 0.25 softdouble::fromRaw(0x3fb0000000000000) // 0.0625 }; result.assign(v5, v5 + 5); return softdouble::one(); } else if (n == 7) { softdouble v7[] = { softdouble::fromRaw(0x3fa0000000000000), // 0.03125 softdouble::fromRaw(0x3fbc000000000000), // 0.109375 softdouble::fromRaw(0x3fcc000000000000), // 0.21875 softdouble::fromRaw(0x3fd2000000000000), // 0.28125 softdouble::fromRaw(0x3fcc000000000000), // 0.21875 softdouble::fromRaw(0x3fbc000000000000), // 0.109375 softdouble::fromRaw(0x3fa0000000000000) // 0.03125 }; result.assign(v7, v7 + 7); return softdouble::one(); } else if (n == 9) { softdouble v9[] = { softdouble::fromRaw(0x3f90000000000000), // 4 / 256 softdouble::fromRaw(0x3faa000000000000), // 13 / 256 softdouble::fromRaw(0x3fbe000000000000), // 30 / 256 softdouble::fromRaw(0x3fc9800000000000), // 51 / 256 softdouble::fromRaw(0x3fce000000000000), // 60 / 256 softdouble::fromRaw(0x3fc9800000000000), // 51 / 256 softdouble::fromRaw(0x3fbe000000000000), // 30 / 256 softdouble::fromRaw(0x3faa000000000000), // 13 / 256 softdouble::fromRaw(0x3f90000000000000) // 4 / 256 }; result.assign(v9, v9 + 9); return softdouble::one(); } } softdouble sd_0_15 = softdouble::fromRaw(0x3fc3333333333333); // 0.15 softdouble sd_0_35 = softdouble::fromRaw(0x3fd6666666666666); // 0.35 softdouble sd_minus_0_125 = softdouble::fromRaw(0xbfc0000000000000); // -0.5*0.25 softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n), sd_0_15, sd_0_35);// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8) softdouble scale2X = sd_minus_0_125/(sigmaX*sigmaX); int n2_ = (n - 1) / 2; cv::AutoBuffer values(n2_ + 1); softdouble sum = softdouble::zero(); for (int i = 0, x = 1 - n; i < n2_; i++, x+=2) { // x = i - (n - 1)*0.5 // t = std::exp(scale2X*x*x) softdouble t = exp(softdouble(x*x)*scale2X); values[i] = t; sum += t; } sum *= softdouble(2); //values[n2_] = softdouble::one(); // x=0 in exp(softdouble(x*x)*scale2X); sum += softdouble::one(); if ((n & 1) == 0) { //values[n2_ + 1] = softdouble::one(); sum += softdouble::one(); } // normalize: sum(k[i]) = 1 softdouble mul1 = softdouble::one()/sum; result.resize(n); softdouble sum2 = softdouble::zero(); for (int i = 0; i < n2_; i++ ) { softdouble t = values[i] * mul1; result[i] = t; result[n - 1 - i] = t; sum2 += t; } sum2 *= softdouble(2); result[n2_] = /*values[n2_]*/ softdouble::one() * mul1; sum2 += result[n2_]; if ((n & 1) == 0) { result[n2_ + 1] = result[n2_]; sum2 += result[n2_]; } return sum2; } Mat getGaussianKernel(int n, double sigma, int ktype) { CV_CheckDepth(ktype, ktype == CV_32F || ktype == CV_64F, ""); Mat kernel(n, 1, ktype); std::vector kernel_bitexact; getGaussianKernelBitExact(kernel_bitexact, n, sigma); if (ktype == CV_32F) { for (int i = 0; i < n; i++) kernel.at(i) = (float)kernel_bitexact[i]; } else { CV_DbgAssert(ktype == CV_64F); for (int i = 0; i < n; i++) kernel.at(i) = kernel_bitexact[i]; } return kernel; } static softdouble getGaussianKernelFixedPoint_ED(CV_OUT std::vector& result, const std::vector kernel_bitexact, int fractionBits) { const int n = (int)kernel_bitexact.size(); CV_Assert((n & 1) == 1); // odd CV_CheckGT(fractionBits, 0, ""); CV_CheckLE(fractionBits, 32, ""); int64_t fractionMultiplier = CV_BIG_INT(1) << fractionBits; softdouble fractionMultiplier_sd(fractionMultiplier); result.resize(n); int n2_ = n / 2; // n is odd softdouble err = softdouble::zero(); int64_t sum = 0; for (int i = 0; i < n2_; i++) { //softdouble err0 = err; softdouble adj_v = kernel_bitexact[i] * fractionMultiplier_sd + err; int64_t v0 = cvRound(adj_v); // cvFloor() provides bad results err = adj_v - softdouble(v0); //printf("%3d: adj_v=%8.3f(%8.3f+%8.3f) v0=%d ed_err=%8.3f\n", i, (double)adj_v, (double)(kernel_bitexact[i] * fractionMultiplier_sd), (double)err0, (int)v0, (double)err); result[i] = v0; result[n - 1 - i] = v0; sum += v0; } sum *= 2; softdouble adj_v_center = kernel_bitexact[n2_] * fractionMultiplier_sd + err; int64_t v_center = fractionMultiplier - sum; result[n2_] = v_center; //printf("center = %g ===> %g ===> %g\n", (double)(kernel_bitexact[n2_] * fractionMultiplier), (double)adj_v_center, (double)v_center); return (adj_v_center - softdouble(v_center)); } static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); } template static void getGaussianKernel(int n, double sigma, int, std::vector& res); //{ res = getFixedpointGaussianKernel(n, sigma); } template<> void getGaussianKernel(int n, double sigma, int, std::vector& res) { std::vector res_sd; softdouble s0 = getGaussianKernelBitExact(res_sd, n, sigma); CV_UNUSED(s0); std::vector fixed_256; softdouble approx_err = getGaussianKernelFixedPoint_ED(fixed_256, res_sd, 8); CV_UNUSED(approx_err); res.resize(n); for (int i = 0; i < n; i++) { res[i] = ufixedpoint16::fromRaw((uint16_t)fixed_256[i]); //printf("%03d: %d\n", i, res[i].raw()); } } template static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize, double sigma1, double sigma2 ) { int depth = CV_MAT_DEPTH(type); if( sigma2 <= 0 ) sigma2 = sigma1; // automatic detection of kernel size from sigma if( ksize.width <= 0 && sigma1 > 0 ) ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; if( ksize.height <= 0 && sigma2 > 0 ) ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 && ksize.height > 0 && ksize.height % 2 == 1 ); sigma1 = std::max( sigma1, 0. ); sigma2 = std::max( sigma2, 0. ); getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx ); if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON ) ky = kx; else getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky ); } Ptr createGaussianFilter( int type, Size ksize, double sigma1, double sigma2, int borderType ) { Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType ); } #ifdef HAVE_OPENCL static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth, InputArray _kernelX, InputArray _kernelY, int borderType) { const ocl::Device & dev = ocl::Device::getDefault(); int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if ( !(dev.isIntel() && (type == CV_8UC1) && (_src.offset() == 0) && (_src.step() % 4 == 0) && ((ksize.width == 5 && (_src.cols() % 4 == 0)) || (ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) ) return false; Mat kernelX = _kernelX.getMat().reshape(1, 1); if (kernelX.cols % 2 != 1) return false; Mat kernelY = _kernelY.getMat().reshape(1, 1); if (kernelY.cols % 2 != 1) return false; if (ddepth < 0) ddepth = sdepth; Size size = _src.size(); size_t globalsize[2] = { 0, 0 }; size_t localsize[2] = { 0, 0 }; if (ksize.width == 3) { globalsize[0] = size.width / 16; globalsize[1] = size.height / 2; } else if (ksize.width == 5) { globalsize[0] = size.width / 4; globalsize[1] = size.height / 1; } const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; char build_opts[1024]; sprintf(build_opts, "-D %s %s%s", borderMap[borderType & ~BORDER_ISOLATED], ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(), ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str()); ocl::Kernel kernel; if (ksize.width == 3) kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts); else if (ksize.width == 5) kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts); if (kernel.empty()) return false; UMat src = _src.getUMat(); _dst.create(size, CV_MAKETYPE(ddepth, cn)); if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) return false; UMat dst = _dst.getUMat(); int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); idxArg = kernel.set(idxArg, (int)src.step); idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); idxArg = kernel.set(idxArg, (int)dst.step); idxArg = kernel.set(idxArg, (int)dst.rows); idxArg = kernel.set(idxArg, (int)dst.cols); return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); } #endif #ifdef HAVE_OPENVX namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 320 * 240; } } static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType) { if (sigma2 <= 0) sigma2 = sigma1; // automatic detection of kernel size from sigma if (ksize.width <= 0 && sigma1 > 0) ksize.width = cvRound(sigma1*6 + 1) | 1; if (ksize.height <= 0 && sigma2 > 0) ksize.height = cvRound(sigma2*6 + 1) | 1; if (_src.type() != CV_8UC1 || _src.cols() < 3 || _src.rows() < 3 || ksize.width != 3 || ksize.height != 3) return false; sigma1 = std::max(sigma1, 0.); sigma2 = std::max(sigma2, 0.); if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) || ovx::skipSmallImages(_src.cols(), _src.rows())) return false; Mat src = _src.getMat(); Mat dst = _dst.getMat(); if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix()) return false; //Process isolated borders only vx_enum border; switch (borderType & ~BORDER_ISOLATED) { case BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case BORDER_REPLICATE: border = VX_BORDER_REPLICATE; break; default: return false; } try { ivx::Context ctx = ovx::getOpenVXContext(); Mat a; if (dst.data != src.data) a = src; else src.copyTo(a); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib)); ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (const ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } #endif #if defined ENABLE_IPP_GAUSSIAN_BLUR // see CMake's OPENCV_IPP_GAUSSIAN_BLUR option #define IPP_DISABLE_GAUSSIAN_BLUR_LARGE_KERNELS_1TH 1 #define IPP_DISABLE_GAUSSIAN_BLUR_16SC4_1TH 1 #define IPP_DISABLE_GAUSSIAN_BLUR_32FC4_1TH 1 // IW 2017u2 has bug which doesn't allow use of partial inMem with tiling #if IPP_VERSION_X100 < 201900 #define IPP_GAUSSIANBLUR_PARALLEL 0 #else #define IPP_GAUSSIANBLUR_PARALLEL 1 #endif #ifdef HAVE_IPP_IW class ipp_gaussianBlurParallel: public ParallelLoopBody { public: ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk): m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) { *m_pOk = true; } ~ipp_gaussianBlurParallel() { } virtual void operator() (const Range& range) const CV_OVERRIDE { CV_INSTRUMENT_REGION_IPP(); if(!*m_pOk) return; try { ::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start); CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile); } catch(const ::ipp::IwException &) { *m_pOk = false; return; } } private: ::ipp::IwiImage &m_src; ::ipp::IwiImage &m_dst; int m_kernelSize; float m_sigma; ::ipp::IwiBorderType &m_border; volatile bool *m_pOk; const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&); }; #endif static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType ) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__)) CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); return false; // bug on ia32 #else if(sigma1 != sigma2) return false; if(sigma1 < FLT_EPSILON) return false; if(ksize.width != ksize.height) return false; // Acquire data and begin processing try { Mat src = _src.getMat(); Mat dst = _dst.getMat(); ::ipp::IwiImage iwSrc = ippiGetImage(src); ::ipp::IwiImage iwDst = ippiGetImage(dst); ::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize)); ::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); if(!ippBorder) return false; const int threads = ippiSuggestThreadsNum(iwDst, 2); if (IPP_DISABLE_GAUSSIAN_BLUR_LARGE_KERNELS_1TH && (threads == 1 && ksize.width > 25)) return false; if (IPP_DISABLE_GAUSSIAN_BLUR_16SC4_1TH && (threads == 1 && src.type() == CV_16SC4)) return false; if (IPP_DISABLE_GAUSSIAN_BLUR_32FC4_1TH && (threads == 1 && src.type() == CV_32FC4)) return false; if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1) { bool ok; ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok); if(!ok) return false; const Range range(0, (int) iwDst.m_size.height); parallel_for_(range, invoker, threads*4); if(!ok) return false; } else { CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder); } } catch (const ::ipp::IwException &) { return false; } return true; #endif #else CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); return false; #endif } #endif template static bool validateGaussianBlurKernel(std::vector& kernel) { softdouble validation_sum = softdouble::zero(); for (size_t i = 0; i < kernel.size(); i++) { validation_sum += softdouble((double)kernel[i]); } bool isValid = validation_sum == softdouble::one(); return isValid; } void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, double sigma1, double sigma2, int borderType) { CV_INSTRUMENT_REGION(); CV_Assert(!_src.empty()); int type = _src.type(); Size size = _src.size(); _dst.create( size, type ); if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT && ((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) ) { if( size.height == 1 ) ksize.height = 1; if( size.width == 1 ) ksize.width = 1; } if( ksize.width == 1 && ksize.height == 1 ) { _src.copyTo(_dst); return; } bool useOpenCL = ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && _src.rows() >= ksize.height && _src.cols() >= ksize.width && ksize.width > 1 && ksize.height > 1; CV_UNUSED(useOpenCL); int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); Mat kx, ky; createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); CV_OCL_RUN(useOpenCL && sdepth == CV_8U && ((ksize.width == 3 && ksize.height == 3) || (ksize.width == 5 && ksize.height == 5)), ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType) ); if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.isSubmatrix())) { std::vector fkx, fky; createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2); static bool param_check_gaussian_blur_bitexact_kernels = utils::getConfigurationParameterBool("OPENCV_GAUSSIANBLUR_CHECK_BITEXACT_KERNELS", false); if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fkx)) { CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fx kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); } else if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fky)) { CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fy kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); } else { CV_OCL_RUN(useOpenCL, ocl_sepFilter2D_BitExact(_src, _dst, sdepth, ksize, (const uint16_t*)&fkx[0], (const uint16_t*)&fky[0], Point(-1, -1), 0, borderType, 8/*shift_bits*/) ); Mat src = _src.getMat(); Mat dst = _dst.getMat(); if (src.data == dst.data) src = src.clone(); CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint16_t*)&fkx[0], (int)fkx.size(), (const uint16_t*)&fky[0], (int)fky.size(), borderType), CV_CPU_DISPATCH_MODES_ALL); return; } } #ifdef HAVE_OPENCL if (useOpenCL) { sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); return; } #endif Mat src = _src.getMat(); Mat dst = _dst.getMat(); Point ofs; Size wsz(src.cols, src.rows); if(!(borderType & BORDER_ISOLATED)) src.locateROI( wsz, ofs ); CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn, ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, sigma1, sigma2, borderType&~BORDER_ISOLATED); CV_OVX_RUN(true, openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)) #if defined ENABLE_IPP_GAUSSIAN_BLUR // IPP is not bit-exact to OpenCV implementation CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)); #endif sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); } } // namespace ////////////////////////////////////////////////////////////////////////////////////////// CV_IMPL void cvSmooth( const void* srcarr, void* dstarr, int smooth_type, int param1, int param2, double param3, double param4 ) { cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0; CV_Assert( dst.size() == src.size() && (smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) ); if( param2 <= 0 ) param2 = param1; if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1), smooth_type == CV_BLUR, cv::BORDER_REPLICATE ); else if( smooth_type == CV_GAUSSIAN ) cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE ); else if( smooth_type == CV_MEDIAN ) cv::medianBlur( src, dst, param1 ); else cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE ); if( dst.data != dst0.data ) CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" ); } /* End of file. */