/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" using namespace std; using namespace testing; using namespace perf; ////////////////////////////////////////////////////////////////////// // FAST DEF_PARAM_TEST(Image_Threshold_NonMaxSuppression, string, int, bool); PERF_TEST_P(Image_Threshold_NonMaxSuppression, Features2D_FAST, Combine(Values("gpu/perf/aloe.png"), Values(20), Bool())) { const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE); ASSERT_FALSE(img.empty()); const int threshold = GET_PARAM(1); const bool nonMaxSuppersion = GET_PARAM(2); if (PERF_RUN_GPU()) { cv::gpu::FAST_GPU d_fast(threshold, nonMaxSuppersion, 0.5); const cv::gpu::GpuMat d_img(img); cv::gpu::GpuMat d_keypoints; TEST_CYCLE() d_fast(d_img, cv::gpu::GpuMat(), d_keypoints); std::vector gpu_keypoints; d_fast.downloadKeypoints(d_keypoints, gpu_keypoints); sortKeyPoints(gpu_keypoints); SANITY_CHECK_KEYPOINTS(gpu_keypoints); } else { std::vector cpu_keypoints; TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion); SANITY_CHECK_KEYPOINTS(cpu_keypoints); } } ////////////////////////////////////////////////////////////////////// // ORB DEF_PARAM_TEST(Image_NFeatures, string, int); PERF_TEST_P(Image_NFeatures, Features2D_ORB, Combine(Values("gpu/perf/aloe.png"), Values(4000))) { declare.time(300.0); const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE); ASSERT_FALSE(img.empty()); const int nFeatures = GET_PARAM(1); if (PERF_RUN_GPU()) { cv::gpu::ORB_GPU d_orb(nFeatures); const cv::gpu::GpuMat d_img(img); cv::gpu::GpuMat d_keypoints, d_descriptors; TEST_CYCLE() d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors); std::vector gpu_keypoints; d_orb.downloadKeyPoints(d_keypoints, gpu_keypoints); cv::Mat gpu_descriptors(d_descriptors); gpu_keypoints.resize(10); gpu_descriptors = gpu_descriptors.rowRange(0, 10); sortKeyPoints(gpu_keypoints, gpu_descriptors); SANITY_CHECK_KEYPOINTS(gpu_keypoints, 1e-10); SANITY_CHECK(gpu_descriptors); } else { cv::ORB orb(nFeatures); std::vector cpu_keypoints; cv::Mat cpu_descriptors; TEST_CYCLE() orb(img, cv::noArray(), cpu_keypoints, cpu_descriptors); SANITY_CHECK_KEYPOINTS(cpu_keypoints); SANITY_CHECK(cpu_descriptors); } } ////////////////////////////////////////////////////////////////////// // BFMatch DEF_PARAM_TEST(DescSize_Norm, int, NormType); #ifdef OPENCV_TINY_GPU_MODULE PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine( Values(64, 128, 256), Values(NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)) )) #else PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine( Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING)) )) #endif { declare.time(20.0); const int desc_size = GET_PARAM(0); const int normType = GET_PARAM(1); const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; cv::Mat query(3000, desc_size, type); declare.in(query, WARMUP_RNG); cv::Mat train(3000, desc_size, type); declare.in(train, WARMUP_RNG); if (PERF_RUN_GPU()) { cv::gpu::BFMatcher_GPU d_matcher(normType); const cv::gpu::GpuMat d_query(query); const cv::gpu::GpuMat d_train(train); cv::gpu::GpuMat d_trainIdx, d_distance; TEST_CYCLE() d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance); std::vector gpu_matches; d_matcher.matchDownload(d_trainIdx, d_distance, gpu_matches); SANITY_CHECK_MATCHES(gpu_matches); } else { cv::BFMatcher matcher(normType); std::vector cpu_matches; TEST_CYCLE() matcher.match(query, train, cpu_matches); SANITY_CHECK_MATCHES(cpu_matches); } } ////////////////////////////////////////////////////////////////////// // BFKnnMatch static void toOneRowMatches(const std::vector< std::vector >& src, std::vector& dst) { dst.clear(); for (size_t i = 0; i < src.size(); ++i) for (size_t j = 0; j < src[i].size(); ++j) dst.push_back(src[i][j]); } DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType); #ifdef OPENCV_TINY_GPU_MODULE PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine( Values(64, 128, 256), Values(2, 3), Values(NormType(cv::NORM_L2)) )) #else PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine( Values(64, 128, 256), Values(2, 3), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2)) )) #endif { declare.time(30.0); const int desc_size = GET_PARAM(0); const int k = GET_PARAM(1); const int normType = GET_PARAM(2); const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; cv::Mat query(3000, desc_size, type); declare.in(query, WARMUP_RNG); cv::Mat train(3000, desc_size, type); declare.in(train, WARMUP_RNG); if (PERF_RUN_GPU()) { cv::gpu::BFMatcher_GPU d_matcher(normType); const cv::gpu::GpuMat d_query(query); const cv::gpu::GpuMat d_train(train); cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist; TEST_CYCLE() d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k); std::vector< std::vector > matchesTbl; d_matcher.knnMatchDownload(d_trainIdx, d_distance, matchesTbl); std::vector gpu_matches; toOneRowMatches(matchesTbl, gpu_matches); SANITY_CHECK_MATCHES(gpu_matches); } else { cv::BFMatcher matcher(normType); std::vector< std::vector > matchesTbl; TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k); std::vector cpu_matches; toOneRowMatches(matchesTbl, cpu_matches); SANITY_CHECK_MATCHES(cpu_matches); } } ////////////////////////////////////////////////////////////////////// // BFRadiusMatch #ifdef OPENCV_TINY_GPU_MODULE PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine( Values(64, 128, 256), Values(NormType(cv::NORM_L2)) )) #else PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine( Values(64, 128, 256), Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2)) )) #endif { declare.time(30.0); const int desc_size = GET_PARAM(0); const int normType = GET_PARAM(1); const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F; const float maxDistance = 10000; cv::Mat query(3000, desc_size, type); declare.in(query, WARMUP_RNG); cv::Mat train(3000, desc_size, type); declare.in(train, WARMUP_RNG); if (PERF_RUN_GPU()) { cv::gpu::BFMatcher_GPU d_matcher(normType); const cv::gpu::GpuMat d_query(query); const cv::gpu::GpuMat d_train(train); cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance; TEST_CYCLE() d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, maxDistance); std::vector< std::vector > matchesTbl; d_matcher.radiusMatchDownload(d_trainIdx, d_distance, d_nMatches, matchesTbl); std::vector gpu_matches; toOneRowMatches(matchesTbl, gpu_matches); SANITY_CHECK_MATCHES(gpu_matches); } else { cv::BFMatcher matcher(normType); std::vector< std::vector > matchesTbl; TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance); std::vector cpu_matches; toOneRowMatches(matchesTbl, cpu_matches); SANITY_CHECK_MATCHES(cpu_matches); } }