#include "perf_precomp.hpp" #include #include "opencv2/core/softfloat.hpp" namespace opencv_test { using namespace perf; using BroadcastTest = perf::TestBaseWithParam, perf::MatType, std::vector>>; typedef Size_MatType BinaryOpTest; PERF_TEST_P_(BroadcastTest, basic) { std::vector shape_src = get<0>(GetParam()); int dt_type = get<1>(GetParam()); std::vector shape_dst = get<2>(GetParam()); cv::Mat src(static_cast(shape_src.size()), shape_src.data(), dt_type); cv::Mat dst(static_cast(shape_dst.size()), shape_dst.data(), dt_type); cv::randu(src, -1.f, 1.f); TEST_CYCLE() cv::broadcast(src, shape_dst, dst); SANITY_CHECK_NOTHING(); } INSTANTIATE_TEST_CASE_P(/*nothing*/ , BroadcastTest, testing::Combine( testing::Values(std::vector{1, 100, 800}, std::vector{10, 1, 800}, std::vector{10, 100, 1}), testing::Values(CV_32FC1), testing::Values(std::vector{10, 100, 800}) ) ); PERF_TEST_P_(BinaryOpTest, min) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Mat b = Mat(sz, type); cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); TEST_CYCLE() cv::min(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, minScalarDouble) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); TEST_CYCLE() cv::min(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, minScalarSameType) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) < CV_32S) { b = Scalar(1, 0, 3, 4); // don't pass non-integer values for 8U/8S/16U/16S processing } else if (CV_MAT_DEPTH(type) == CV_32S) { b = Scalar(1, 0, -3, 4); // don't pass non-integer values for 32S processing } TEST_CYCLE() cv::min(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, max) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Mat b = Mat(sz, type); cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); TEST_CYCLE() cv::max(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, maxScalarDouble) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); TEST_CYCLE() cv::max(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, maxScalarSameType) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) < CV_32S) { b = Scalar(1, 0, 3, 4); // don't pass non-integer values for 8U/8S/16U/16S processing } else if (CV_MAT_DEPTH(type) == CV_32S) { b = Scalar(1, 0, -3, 4); // don't pass non-integer values for 32S processing } TEST_CYCLE() cv::max(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, absdiff) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Mat b = Mat(sz, type); cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: absdiff can be without saturation on 32S a /= 2; b /= 2; } TEST_CYCLE() cv::absdiff(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, absdiffScalarDouble) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: absdiff can be without saturation on 32S a /= 2; b /= 2; } TEST_CYCLE() cv::absdiff(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, absdiffScalarSameType) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) < CV_32S) { b = Scalar(1, 0, 3, 4); // don't pass non-integer values for 8U/8S/16U/16S processing } else if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: absdiff can be without saturation on 32S a /= 2; b = Scalar(1, 0, -3, 4); // don't pass non-integer values for 32S processing } TEST_CYCLE() cv::absdiff(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, add) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Mat b = Mat(sz, type); cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); declare.time(50); if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: add can be without saturation on 32S a /= 2; b /= 2; } TEST_CYCLE() cv::add(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, addScalarDouble) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: add can be without saturation on 32S a /= 2; b /= 2; } TEST_CYCLE() cv::add(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, addScalarSameType) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) < CV_32S) { b = Scalar(1, 0, 3, 4); // don't pass non-integer values for 8U/8S/16U/16S processing } else if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: add can be without saturation on 32S a /= 2; b = Scalar(1, 0, -3, 4); // don't pass non-integer values for 32S processing } TEST_CYCLE() cv::add(a, b, c, noArray(), type); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, subtract) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Mat b = Mat(sz, type); cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: subtract can be without saturation on 32S a /= 2; b /= 2; } TEST_CYCLE() cv::subtract(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, subtractScalarDouble) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: subtract can be without saturation on 32S a /= 2; b /= 2; } TEST_CYCLE() cv::subtract(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, subtractScalarSameType) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type); cv::Scalar b; cv::Mat c = Mat(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) < CV_32S) { b = Scalar(1, 0, 3, 4); // don't pass non-integer values for 8U/8S/16U/16S processing } else if (CV_MAT_DEPTH(type) == CV_32S) { //see ticket 1529: subtract can be without saturation on 32S a /= 2; b = Scalar(1, 0, -3, 4); // don't pass non-integer values for 32S processing } TEST_CYCLE() cv::subtract(a, b, c, noArray(), type); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, multiply) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a(sz, type), b(sz, type), c(sz, type); declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //According to docs, saturation is not applied when result is 32bit integer a /= (2 << 16); b /= (2 << 16); } TEST_CYCLE() cv::multiply(a, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, multiplyScale) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a(sz, type), b(sz, type), c(sz, type); double scale = 0.5; declare.in(a, b, WARMUP_RNG).out(c); if (CV_MAT_DEPTH(type) == CV_32S) { //According to docs, saturation is not applied when result is 32bit integer a /= (2 << 16); b /= (2 << 16); } TEST_CYCLE() cv::multiply(a, b, c, scale); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, divide) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a(sz, type), b(sz, type), c(sz, type); double scale = 0.5; declare.in(a, b, WARMUP_RNG).out(c); TEST_CYCLE() cv::divide(a, b, c, scale); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, reciprocal) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat b(sz, type), c(sz, type); double scale = 0.5; declare.in(b, WARMUP_RNG).out(c); TEST_CYCLE() cv::divide(scale, b, c); SANITY_CHECK_NOTHING(); } PERF_TEST_P_(BinaryOpTest, transposeND) { Size sz = get<0>(GetParam()); int type = get<1>(GetParam()); cv::Mat a = Mat(sz, type).reshape(1); std::vector order(a.dims); std::iota(order.begin(), order.end(), 0); std::reverse(order.begin(), order.end()); std::vector new_sz(a.dims); std::copy(a.size.p, a.size.p + a.dims, new_sz.begin()); std::reverse(new_sz.begin(), new_sz.end()); cv::Mat b = Mat(new_sz, type); declare.in(a,WARMUP_RNG).out(b); TEST_CYCLE() cv::transposeND(a, order, b); SANITY_CHECK_NOTHING(); } INSTANTIATE_TEST_CASE_P(/*nothing*/ , BinaryOpTest, testing::Combine( testing::Values(szVGA, sz720p, sz1080p), testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_8SC1, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4, CV_32SC1, CV_32FC1) ) ); ///////////// Rotate //////////////////////// typedef perf::TestBaseWithParam> RotateTest; PERF_TEST_P_(RotateTest, rotate) { Size sz = get<0>(GetParam()); int rotatecode = get<1>(GetParam()); int type = get<2>(GetParam()); cv::Mat a(sz, type), b(sz, type); declare.in(a, WARMUP_RNG).out(b); TEST_CYCLE() cv::rotate(a, b, rotatecode); SANITY_CHECK_NOTHING(); } INSTANTIATE_TEST_CASE_P(/*nothing*/ , RotateTest, testing::Combine( testing::Values(szVGA, sz720p, sz1080p), testing::Values(ROTATE_180, ROTATE_90_CLOCKWISE, ROTATE_90_COUNTERCLOCKWISE), testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_8SC1, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4, CV_32SC1, CV_32FC1) ) ); ///////////// PatchNaNs //////////////////////// template _Tp randomNan(RNG& rng); template<> float randomNan(RNG& rng) { uint32_t r = rng.next(); Cv32suf v; v.u = r; // exp & set a bit to avoid zero mantissa v.u = v.u | 0x7f800001; return v.f; } template<> double randomNan(RNG& rng) { uint32_t r0 = rng.next(); uint32_t r1 = rng.next(); Cv64suf v; v.u = (uint64_t(r0) << 32) | uint64_t(r1); // exp &set a bit to avoid zero mantissa v.u = v.u | 0x7ff0000000000001; return v.f; } typedef Size_MatType PatchNaNsFixture; PERF_TEST_P_(PatchNaNsFixture, PatchNaNs) { const Size_MatType_t params = GetParam(); Size srcSize = get<0>(params); const int type = get<1>(params), cn = CV_MAT_CN(type); Mat src(srcSize, type); declare.in(src, WARMUP_RNG).out(src); // generating NaNs { srcSize.width *= cn; RNG& rng = theRNG(); for (int y = 0; y < srcSize.height; ++y) { float *const ptrf = src.ptr(y); for (int x = 0; x < srcSize.width; ++x) { ptrf[x] = (x + y) % 2 == 0 ? randomNan(rng) : ptrf[x]; } } } TEST_CYCLE() cv::patchNaNs(src, 17.7); SANITY_CHECK(src); } INSTANTIATE_TEST_CASE_P(/*nothing*/ , PatchNaNsFixture, testing::Combine( testing::Values(szVGA, sz720p, sz1080p, sz2160p), testing::Values(CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4) ) ); } // namespace