/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "umatrix.hpp" #include ///////////////////////////////// UMat implementation /////////////////////////////// namespace cv { // forward decls, implementation is below in this file void setSize(UMat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps = false); void updateContinuityFlag(UMat& m); void finalizeHdr(UMat& m); // it should be a prime number for the best hash function enum { UMAT_NLOCKS = 31 }; static Mutex umatLocks[UMAT_NLOCKS]; UMatData::UMatData(const MatAllocator* allocator) { prevAllocator = currAllocator = allocator; urefcount = refcount = mapcount = 0; data = origdata = 0; size = 0; flags = 0; handle = 0; userdata = 0; allocatorFlags_ = 0; originalUMatData = NULL; } UMatData::~UMatData() { prevAllocator = currAllocator = 0; urefcount = refcount = 0; CV_Assert(mapcount == 0); data = origdata = 0; size = 0; bool isAsyncCleanup = !!(flags & UMatData::ASYNC_CLEANUP); flags = 0; handle = 0; userdata = 0; allocatorFlags_ = 0; if (originalUMatData) { bool showWarn = false; UMatData* u = originalUMatData; bool zero_Ref = CV_XADD(&(u->refcount), -1) == 1; if (zero_Ref) { // simulate Mat::deallocate if (u->mapcount != 0) { (u->currAllocator ? u->currAllocator : /* TODO allocator ? allocator :*/ Mat::getDefaultAllocator())->unmap(u); } else { // we don't do "map", so we can't do "unmap" } } bool zero_URef = CV_XADD(&(u->urefcount), -1) == 1; if (zero_Ref && !zero_URef) showWarn = true; if (zero_Ref && zero_URef) // oops, we need to free resources { showWarn = !isAsyncCleanup; // simulate UMat::deallocate u->currAllocator->deallocate(u); } #ifndef NDEBUG if (showWarn) { static int warn_message_showed = 0; if (warn_message_showed++ < 100) { fflush(stdout); fprintf(stderr, "\n! OPENCV warning: getUMat()/getMat() call chain possible problem." "\n! Base object is dead, while nested/derived object is still alive or processed." "\n! Please check lifetime of UMat/Mat objects!\n"); fflush(stderr); } } #else CV_UNUSED(showWarn); #endif originalUMatData = NULL; } } static size_t getUMatDataLockIndex(const UMatData* u) { size_t idx = ((size_t)(void*)u) % UMAT_NLOCKS; return idx; } void UMatData::lock() { size_t idx = getUMatDataLockIndex(this); //printf("%d lock(%d)\n", cv::utils::getThreadID(), (int)idx); umatLocks[idx].lock(); } void UMatData::unlock() { size_t idx = getUMatDataLockIndex(this); //printf("%d unlock(%d)\n", cv::utils::getThreadID(), (int)idx); umatLocks[idx].unlock(); } // Do not allow several lock() calls with different UMatData objects. struct UMatDataAutoLocker { int usage_count; UMatData* locked_objects[2]; UMatDataAutoLocker() : usage_count(0) { locked_objects[0] = NULL; locked_objects[1] = NULL; } void lock(UMatData*& u1) { bool locked_1 = (u1 == locked_objects[0] || u1 == locked_objects[1]); if (locked_1) { u1 = NULL; return; } CV_Assert(usage_count == 0); // UMatDataAutoLock can't be used multiple times from the same thread usage_count = 1; locked_objects[0] = u1; u1->lock(); } void lock(UMatData*& u1, UMatData*& u2) { bool locked_1 = (u1 == locked_objects[0] || u1 == locked_objects[1]); bool locked_2 = (u2 == locked_objects[0] || u2 == locked_objects[1]); if (locked_1) u1 = NULL; if (locked_2) u2 = NULL; if (locked_1 && locked_2) return; CV_Assert(usage_count == 0); // UMatDataAutoLock can't be used multiple times from the same thread usage_count = 1; locked_objects[0] = u1; locked_objects[1] = u2; if (u1) u1->lock(); if (u2) u2->lock(); } void release(UMatData* u1, UMatData* u2) { if (u1 == NULL && u2 == NULL) return; CV_Assert(usage_count == 1); usage_count = 0; if (u1) u1->unlock(); if (u2) u2->unlock(); locked_objects[0] = NULL; locked_objects[1] = NULL; } }; static TLSData& getUMatDataAutoLockerTLS() { CV_SINGLETON_LAZY_INIT_REF(TLSData, new TLSData()); } static UMatDataAutoLocker& getUMatDataAutoLocker() { return getUMatDataAutoLockerTLS().getRef(); } UMatDataAutoLock::UMatDataAutoLock(UMatData* u) : u1(u), u2(NULL) { getUMatDataAutoLocker().lock(u1); } UMatDataAutoLock::UMatDataAutoLock(UMatData* u1_, UMatData* u2_) : u1(u1_), u2(u2_) { if (getUMatDataLockIndex(u1) > getUMatDataLockIndex(u2)) { std::swap(u1, u2); } getUMatDataAutoLocker().lock(u1, u2); } UMatDataAutoLock::~UMatDataAutoLock() { getUMatDataAutoLocker().release(u1, u2); } //////////////////////////////// UMat //////////////////////////////// UMat::UMat(UMatUsageFlags _usageFlags) CV_NOEXCEPT : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) {} UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_rows, _cols, _type); } UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_rows, _cols, _type); *this = _s; } UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create( _sz.height, _sz.width, _type ); } UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_sz.height, _sz.width, _type); *this = _s; } UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_dims, _sz, _type); } UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) { create(_dims, _sz, _type); *this = _s; } UMat::UMat(const UMat& m) : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) { addref(); if( m.dims <= 2 ) { step[0] = m.step[0]; step[1] = m.step[1]; } else { dims = 0; copySize(m); } } UMat& UMat::operator=(const UMat& m) { if( this != &m ) { const_cast(m).addref(); release(); flags = m.flags; if( dims <= 2 && m.dims <= 2 ) { dims = m.dims; rows = m.rows; cols = m.cols; step[0] = m.step[0]; step[1] = m.step[1]; } else copySize(m); allocator = m.allocator; if (usageFlags == USAGE_DEFAULT) usageFlags = m.usageFlags; u = m.u; offset = m.offset; } return *this; } UMat UMat::clone() const { UMat m; copyTo(m); return m; } void UMat::assignTo(UMat& m, int _type) const { if( _type < 0 ) m = *this; else convertTo(m, _type); } void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) { _type &= TYPE_MASK; if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u ) return; int sz[] = {_rows, _cols}; create(2, sz, _type, _usageFlags); } void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags) { create(_sz.height, _sz.width, _type, _usageFlags); } void UMat::addref() { if( u ) CV_XADD(&(u->urefcount), 1); } void UMat::release() { if( u && CV_XADD(&(u->urefcount), -1) == 1 ) deallocate(); for(int i = 0; i < dims; i++) size.p[i] = 0; u = 0; } bool UMat::empty() const { return u == 0 || total() == 0 || dims == 0; } size_t UMat::total() const { if( dims <= 2 ) return (size_t)rows * cols; size_t p = 1; for( int i = 0; i < dims; i++ ) p *= size[i]; return p; } MatAllocator* UMat::getStdAllocator() { #ifdef HAVE_OPENCL if (ocl::useOpenCL()) return ocl::getOpenCLAllocator(); #endif return Mat::getDefaultAllocator(); } void swap( UMat& a, UMat& b ) { std::swap(a.flags, b.flags); std::swap(a.dims, b.dims); std::swap(a.rows, b.rows); std::swap(a.cols, b.cols); std::swap(a.allocator, b.allocator); std::swap(a.u, b.u); std::swap(a.offset, b.offset); std::swap(a.size.p, b.size.p); std::swap(a.step.p, b.step.p); std::swap(a.step.buf[0], b.step.buf[0]); std::swap(a.step.buf[1], b.step.buf[1]); if( a.step.p == b.step.buf ) { a.step.p = a.step.buf; a.size.p = &a.rows; } if( b.step.p == a.step.buf ) { b.step.p = b.step.buf; b.size.p = &b.rows; } } void setSize( UMat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps ) { CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM ); if( m.dims != _dims ) { if( m.step.p != m.step.buf ) { fastFree(m.step.p); m.step.p = m.step.buf; m.size.p = &m.rows; } if( _dims > 2 ) { m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0])); m.size.p = (int*)(m.step.p + _dims) + 1; m.size.p[-1] = _dims; m.rows = m.cols = -1; } } m.dims = _dims; if( !_sz ) return; size_t esz = CV_ELEM_SIZE(m.flags), total = esz; int i; for( i = _dims-1; i >= 0; i-- ) { int s = _sz[i]; CV_Assert( s >= 0 ); m.size.p[i] = s; if( _steps ) m.step.p[i] = i < _dims-1 ? _steps[i] : esz; else if( autoSteps ) { m.step.p[i] = total; int64 total1 = (int64)total*s; if( (uint64)total1 != (size_t)total1 ) CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" ); total = (size_t)total1; } } if( _dims == 1 ) { m.dims = 2; m.cols = 1; m.step[1] = esz; } } void UMat::updateContinuityFlag() { flags = cv::updateContinuityFlag(flags, dims, size.p, step.p); } void finalizeHdr(UMat& m) { m.updateContinuityFlag(); int d = m.dims; if( d > 2 ) m.rows = m.cols = -1; } UMat Mat::getUMat(int accessFlags, UMatUsageFlags usageFlags) const { UMat hdr; if(!data) return hdr; if (data != datastart) { Size wholeSize; Point ofs; locateROI(wholeSize, ofs); Size sz(cols, rows); if (ofs.x != 0 || ofs.y != 0) { Mat src = *this; int dtop = ofs.y; int dbottom = wholeSize.height - src.rows - ofs.y; int dleft = ofs.x; int dright = wholeSize.width - src.cols - ofs.x; src.adjustROI(dtop, dbottom, dleft, dright); return src.getUMat(accessFlags, usageFlags)(cv::Rect(ofs.x, ofs.y, sz.width, sz.height)); } } CV_Assert(data == datastart); accessFlags |= ACCESS_RW; UMatData* new_u = NULL; { MatAllocator *a = allocator, *a0 = getDefaultAllocator(); if(!a) a = a0; new_u = a->allocate(dims, size.p, type(), data, step.p, accessFlags, usageFlags); new_u->originalUMatData = u; } bool allocated = false; try { allocated = UMat::getStdAllocator()->allocate(new_u, accessFlags, usageFlags); } catch (const cv::Exception& e) { fprintf(stderr, "Exception: %s\n", e.what()); } if (!allocated) { allocated = getDefaultAllocator()->allocate(new_u, accessFlags, usageFlags); CV_Assert(allocated); } if (u != NULL) { #ifdef HAVE_OPENCL if (ocl::useOpenCL() && new_u->currAllocator == ocl::getOpenCLAllocator()) { CV_Assert(new_u->tempUMat()); } #endif CV_XADD(&(u->refcount), 1); CV_XADD(&(u->urefcount), 1); } try { hdr.flags = flags; setSize(hdr, dims, size.p, step.p); finalizeHdr(hdr); hdr.u = new_u; hdr.offset = 0; //data - datastart; hdr.addref(); return hdr; } catch(...) { if (u != NULL) { CV_XADD(&(u->refcount), -1); CV_XADD(&(u->urefcount), -1); } new_u->currAllocator->deallocate(new_u); throw; } } void UMat::create(int d, const int* _sizes, int _type, UMatUsageFlags _usageFlags) { this->usageFlags = _usageFlags; int i; CV_Assert(0 <= d && d <= CV_MAX_DIM && _sizes); _type = CV_MAT_TYPE(_type); if( u && (d == dims || (d == 1 && dims <= 2)) && _type == type() ) { if( d == 2 && rows == _sizes[0] && cols == _sizes[1] ) return; for( i = 0; i < d; i++ ) if( size[i] != _sizes[i] ) break; if( i == d && (d > 1 || size[1] == 1)) return; } int _sizes_backup[CV_MAX_DIM]; // #5991 if (_sizes == (this->size.p)) { for(i = 0; i < d; i++ ) _sizes_backup[i] = _sizes[i]; _sizes = _sizes_backup; } release(); if( d == 0 ) return; flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL; setSize(*this, d, _sizes, 0, true); offset = 0; if( total() > 0 ) { MatAllocator *a = allocator, *a0 = getStdAllocator(); if (!a) { a = a0; a0 = Mat::getDefaultAllocator(); } try { u = a->allocate(dims, size, _type, 0, step.p, 0, usageFlags); CV_Assert(u != 0); } catch(...) { if(a != a0) u = a0->allocate(dims, size, _type, 0, step.p, 0, usageFlags); CV_Assert(u != 0); } CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) ); } finalizeHdr(*this); addref(); } void UMat::create(const std::vector& _sizes, int _type, UMatUsageFlags _usageFlags) { create((int)_sizes.size(), _sizes.data(), _type, _usageFlags); } void UMat::copySize(const UMat& m) { setSize(*this, m.dims, 0, 0); for( int i = 0; i < dims; i++ ) { size[i] = m.size[i]; step[i] = m.step[i]; } } UMat::~UMat() { release(); if( step.p != step.buf ) fastFree(step.p); } void UMat::deallocate() { UMatData* u_ = u; u = NULL; u_->currAllocator->deallocate(u_); } UMat::UMat(const UMat& m, const Range& _rowRange, const Range& _colRange) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) { CV_Assert( m.dims >= 2 ); if( m.dims > 2 ) { AutoBuffer rs(m.dims); rs[0] = _rowRange; rs[1] = _colRange; for( int i = 2; i < m.dims; i++ ) rs[i] = Range::all(); *this = m(rs.data()); return; } *this = m; if( _rowRange != Range::all() && _rowRange != Range(0,rows) ) { CV_Assert( 0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows ); rows = _rowRange.size(); offset += step*_rowRange.start; flags |= SUBMATRIX_FLAG; } if( _colRange != Range::all() && _colRange != Range(0,cols) ) { CV_Assert( 0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols ); cols = _colRange.size(); offset += _colRange.start*elemSize(); flags |= SUBMATRIX_FLAG; } updateContinuityFlag(); if( rows <= 0 || cols <= 0 ) { release(); rows = cols = 0; } } UMat::UMat(const UMat& m, const Rect& roi) : flags(m.flags), dims(2), rows(roi.height), cols(roi.width), allocator(m.allocator), usageFlags(m.usageFlags), u(m.u), offset(m.offset + roi.y*m.step[0]), size(&rows) { CV_Assert( m.dims <= 2 ); size_t esz = CV_ELEM_SIZE(flags); offset += roi.x*esz; CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows ); if( roi.width < m.cols || roi.height < m.rows ) flags |= SUBMATRIX_FLAG; step[0] = m.step[0]; step[1] = esz; updateContinuityFlag(); addref(); if( rows <= 0 || cols <= 0 ) { rows = cols = 0; release(); } } UMat::UMat(const UMat& m, const Range* ranges) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) { int i, d = m.dims; CV_Assert(ranges); for( i = 0; i < d; i++ ) { Range r = ranges[i]; CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) ); } *this = m; for( i = 0; i < d; i++ ) { Range r = ranges[i]; if( r != Range::all() && r != Range(0, size.p[i])) { size.p[i] = r.end - r.start; offset += r.start*step.p[i]; flags |= SUBMATRIX_FLAG; } } updateContinuityFlag(); } UMat::UMat(const UMat& m, const std::vector& ranges) : flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) { int i, d = m.dims; CV_Assert((int)ranges.size() == d); for (i = 0; i < d; i++) { Range r = ranges[i]; CV_Assert(r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i])); } *this = m; for (i = 0; i < d; i++) { Range r = ranges[i]; if (r != Range::all() && r != Range(0, size.p[i])) { size.p[i] = r.end - r.start; offset += r.start*step.p[i]; flags |= SUBMATRIX_FLAG; } } updateContinuityFlag(); } UMat UMat::diag(int d) const { CV_Assert( dims <= 2 ); UMat m = *this; size_t esz = elemSize(); int len; if( d >= 0 ) { len = std::min(cols - d, rows); m.offset += esz*d; } else { len = std::min(rows + d, cols); m.offset -= step[0]*d; } CV_DbgAssert( len > 0 ); m.size[0] = m.rows = len; m.size[1] = m.cols = 1; m.step[0] += (len > 1 ? esz : 0); m.updateContinuityFlag(); if( size() != Size(1,1) ) m.flags |= SUBMATRIX_FLAG; return m; } void UMat::locateROI( Size& wholeSize, Point& ofs ) const { CV_Assert( dims <= 2 && step[0] > 0 ); size_t esz = elemSize(), minstep; ptrdiff_t delta1 = (ptrdiff_t)offset, delta2 = (ptrdiff_t)u->size; if( delta1 == 0 ) ofs.x = ofs.y = 0; else { ofs.y = (int)(delta1/step[0]); ofs.x = (int)((delta1 - step[0]*ofs.y)/esz); CV_DbgAssert( offset == (size_t)(ofs.y*step[0] + ofs.x*esz) ); } minstep = (ofs.x + cols)*esz; wholeSize.height = (int)((delta2 - minstep)/step[0] + 1); wholeSize.height = std::max(wholeSize.height, ofs.y + rows); wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz); wholeSize.width = std::max(wholeSize.width, ofs.x + cols); } UMat& UMat::adjustROI( int dtop, int dbottom, int dleft, int dright ) { CV_Assert( dims <= 2 && step[0] > 0 ); Size wholeSize; Point ofs; size_t esz = elemSize(); locateROI( wholeSize, ofs ); int row1 = std::min(std::max(ofs.y - dtop, 0), wholeSize.height), row2 = std::max(0, std::min(ofs.y + rows + dbottom, wholeSize.height)); int col1 = std::min(std::max(ofs.x - dleft, 0), wholeSize.width), col2 = std::max(0, std::min(ofs.x + cols + dright, wholeSize.width)); if(row1 > row2) std::swap(row1, row2); if(col1 > col2) std::swap(col1, col2); offset += (row1 - ofs.y)*step + (col1 - ofs.x)*esz; rows = row2 - row1; cols = col2 - col1; size.p[0] = rows; size.p[1] = cols; updateContinuityFlag(); return *this; } UMat UMat::reshape(int new_cn, int new_rows) const { int cn = channels(); UMat hdr = *this; if( dims > 2 && new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 ) { hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags); hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn; return hdr; } CV_Assert( dims <= 2 ); if( new_cn == 0 ) new_cn = cn; int total_width = cols * cn; if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 ) new_rows = rows * total_width / new_cn; if( new_rows != 0 && new_rows != rows ) { int total_size = total_width * rows; if( !isContinuous() ) CV_Error( CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed" ); if( (unsigned)new_rows > (unsigned)total_size ) CV_Error( CV_StsOutOfRange, "Bad new number of rows" ); total_width = total_size / new_rows; if( total_width * new_rows != total_size ) CV_Error( CV_StsBadArg, "The total number of matrix elements " "is not divisible by the new number of rows" ); hdr.rows = new_rows; hdr.step[0] = total_width * elemSize1(); } int new_width = total_width / new_cn; if( new_width * new_cn != total_width ) CV_Error( CV_BadNumChannels, "The total width is not divisible by the new number of channels" ); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT); hdr.step[1] = CV_ELEM_SIZE(hdr.flags); return hdr; } UMat UMat::diag(const UMat& d) { CV_Assert( d.cols == 1 || d.rows == 1 ); int len = d.rows + d.cols - 1; UMat m(len, len, d.type(), Scalar(0)); UMat md = m.diag(); if( d.cols == 1 ) d.copyTo(md); else transpose(d, md); return m; } int UMat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const { return (depth() == _depth || _depth <= 0) && (isContinuous() || !_requireContinuous) && ((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) || (cols == _elemChannels && channels() == 1))) || (dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) && (isContinuous() || step.p[1] == step.p[2]*size.p[2]))) ? (int)(total()*channels()/_elemChannels) : -1; } UMat UMat::reshape(int _cn, int _newndims, const int* _newsz) const { if(_newndims == dims) { if(_newsz == 0) return reshape(_cn); if(_newndims == 2) return reshape(_cn, _newsz[0]); } if (isContinuous()) { CV_Assert(_cn >= 0 && _newndims > 0 && _newndims <= CV_MAX_DIM && _newsz); if (_cn == 0) _cn = this->channels(); else CV_Assert(_cn <= CV_CN_MAX); size_t total_elem1_ref = this->total() * this->channels(); size_t total_elem1 = _cn; AutoBuffer newsz_buf( (size_t)_newndims ); for (int i = 0; i < _newndims; i++) { CV_Assert(_newsz[i] >= 0); if (_newsz[i] > 0) newsz_buf[i] = _newsz[i]; else if (i < dims) newsz_buf[i] = this->size[i]; else CV_Error(CV_StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix"); total_elem1 *= (size_t)newsz_buf[i]; } if (total_elem1 != total_elem1_ref) CV_Error(CV_StsUnmatchedSizes, "Requested and source matrices have different count of elements"); UMat hdr = *this; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((_cn-1) << CV_CN_SHIFT); setSize(hdr, _newndims, newsz_buf.data(), NULL, true); return hdr; } CV_Error(CV_StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet"); } Mat UMat::getMat(int accessFlags) const { if(!u) return Mat(); // TODO Support ACCESS_READ (ACCESS_WRITE) without unnecessary data transfers accessFlags |= ACCESS_RW; UMatDataAutoLock autolock(u); try { if(CV_XADD(&u->refcount, 1) == 0) u->currAllocator->map(u, accessFlags); if (u->data != 0) { Mat hdr(dims, size.p, type(), u->data + offset, step.p); hdr.flags = flags; hdr.u = u; hdr.datastart = u->data; hdr.data = u->data + offset; hdr.datalimit = hdr.dataend = u->data + u->size; return hdr; } } catch(...) { CV_XADD(&u->refcount, -1); throw; } CV_XADD(&u->refcount, -1); CV_Assert(u->data != 0 && "Error mapping of UMat to host memory."); return Mat(); } void* UMat::handle(int accessFlags) const { if( !u ) return 0; CV_Assert(u->refcount == 0); CV_Assert(!u->deviceCopyObsolete() || u->copyOnMap()); if (u->deviceCopyObsolete()) { u->currAllocator->unmap(u); } if ((accessFlags & ACCESS_WRITE) != 0) u->markHostCopyObsolete(true); return u->handle; } void UMat::ndoffset(size_t* ofs) const { // offset = step[0]*ofs[0] + step[1]*ofs[1] + step[2]*ofs[2] + ...; size_t val = offset; for( int i = 0; i < dims; i++ ) { size_t s = step.p[i]; ofs[i] = val / s; val -= ofs[i]*s; } } void UMat::copyTo(OutputArray _dst) const { CV_INSTRUMENT_REGION(); #ifdef HAVE_CUDA if (_dst.isGpuMat()) { _dst.getGpuMat().upload(*this); return; } #endif int dtype = _dst.type(); if( _dst.fixedType() && dtype != type() ) { CV_Assert( channels() == CV_MAT_CN(dtype) ); convertTo( _dst, dtype ); return; } if( empty() ) { _dst.release(); return; } size_t i, sz[CV_MAX_DIM] = {0}, srcofs[CV_MAX_DIM], dstofs[CV_MAX_DIM], esz = elemSize(); for( i = 0; i < (size_t)dims; i++ ) sz[i] = size.p[i]; sz[dims-1] *= esz; ndoffset(srcofs); srcofs[dims-1] *= esz; _dst.create( dims, size.p, type() ); if( _dst.isUMat() ) { UMat dst = _dst.getUMat(); CV_Assert(dst.u); if( u == dst.u && dst.offset == offset ) return; if (u->currAllocator == dst.u->currAllocator) { dst.ndoffset(dstofs); dstofs[dims-1] *= esz; u->currAllocator->copy(u, dst.u, dims, sz, srcofs, step.p, dstofs, dst.step.p, false); return; } } Mat dst = _dst.getMat(); u->currAllocator->download(u, dst.ptr(), dims, sz, srcofs, step.p, dst.step.p); } void UMat::copyTo(OutputArray _dst, InputArray _mask) const { CV_INSTRUMENT_REGION(); if( _mask.empty() ) { copyTo(_dst); return; } #ifdef HAVE_OPENCL int cn = channels(), mtype = _mask.type(), mdepth = CV_MAT_DEPTH(mtype), mcn = CV_MAT_CN(mtype); CV_Assert( mdepth == CV_8U && (mcn == 1 || mcn == cn) ); if (ocl::useOpenCL() && _dst.isUMat() && dims <= 2) { UMatData * prevu = _dst.getUMat().u; _dst.create( dims, size, type() ); UMat dst = _dst.getUMat(); bool haveDstUninit = false; if( prevu != dst.u ) // do not leave dst uninitialized haveDstUninit = true; String opts = format("-D COPY_TO_MASK -D T1=%s -D scn=%d -D mcn=%d%s", ocl::memopTypeToStr(depth()), cn, mcn, haveDstUninit ? " -D HAVE_DST_UNINIT" : ""); ocl::Kernel k("copyToMask", ocl::core::copyset_oclsrc, opts); if (!k.empty()) { k.args(ocl::KernelArg::ReadOnlyNoSize(*this), ocl::KernelArg::ReadOnlyNoSize(_mask.getUMat()), haveDstUninit ? ocl::KernelArg::WriteOnly(dst) : ocl::KernelArg::ReadWrite(dst)); size_t globalsize[2] = { (size_t)cols, (size_t)rows }; if (k.run(2, globalsize, NULL, false)) { CV_IMPL_ADD(CV_IMPL_OCL); return; } } } #endif Mat src = getMat(ACCESS_READ); src.copyTo(_dst, _mask); } void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const { CV_INSTRUMENT_REGION(); bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON; int stype = type(), cn = CV_MAT_CN(stype); if( _type < 0 ) _type = _dst.fixedType() ? _dst.type() : stype; else _type = CV_MAKETYPE(CV_MAT_DEPTH(_type), cn); int sdepth = CV_MAT_DEPTH(stype), ddepth = CV_MAT_DEPTH(_type); if( sdepth == ddepth && noScale ) { copyTo(_dst); return; } #ifdef HAVE_OPENCL bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; bool needDouble = sdepth == CV_64F || ddepth == CV_64F; if( dims <= 2 && cn && _dst.isUMat() && ocl::useOpenCL() && ((needDouble && doubleSupport) || !needDouble) ) { int wdepth = std::max(CV_32F, sdepth), rowsPerWI = 4; char cvt[2][40]; ocl::Kernel k("convertTo", ocl::core::convert_oclsrc, format("-D srcT=%s -D WT=%s -D dstT=%s -D convertToWT=%s -D convertToDT=%s%s%s", ocl::typeToStr(sdepth), ocl::typeToStr(wdepth), ocl::typeToStr(ddepth), ocl::convertTypeStr(sdepth, wdepth, 1, cvt[0]), ocl::convertTypeStr(wdepth, ddepth, 1, cvt[1]), doubleSupport ? " -D DOUBLE_SUPPORT" : "", noScale ? " -D NO_SCALE" : "")); if (!k.empty()) { UMat src = *this; _dst.create( size(), _type ); UMat dst = _dst.getUMat(); float alphaf = (float)alpha, betaf = (float)beta; ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dstarg = ocl::KernelArg::WriteOnly(dst, cn); if (noScale) k.args(srcarg, dstarg, rowsPerWI); else if (wdepth == CV_32F) k.args(srcarg, dstarg, alphaf, betaf, rowsPerWI); else k.args(srcarg, dstarg, alpha, beta, rowsPerWI); size_t globalsize[2] = { (size_t)dst.cols * cn, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; if (k.run(2, globalsize, NULL, false)) { CV_IMPL_ADD(CV_IMPL_OCL); return; } } } #endif UMat src = *this; // Fake reference to itself. // Resolves issue 8693 in case of src == dst. Mat m = getMat(ACCESS_READ); m.convertTo(_dst, _type, alpha, beta); } UMat& UMat::setTo(InputArray _value, InputArray _mask) { CV_INSTRUMENT_REGION(); bool haveMask = !_mask.empty(); #ifdef HAVE_OPENCL int tp = type(), cn = CV_MAT_CN(tp), d = CV_MAT_DEPTH(tp); if( dims <= 2 && cn <= 4 && CV_MAT_DEPTH(tp) < CV_64F && ocl::useOpenCL() ) { Mat value = _value.getMat(); CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::UMAT) ); int kercn = haveMask || cn == 3 ? cn : std::max(cn, ocl::predictOptimalVectorWidth(*this)), kertp = CV_MAKE_TYPE(d, kercn); double buf[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; convertAndUnrollScalar(value, tp, (uchar *)buf, kercn / cn); int scalarcn = kercn == 3 ? 4 : kercn, rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; String opts = format("-D dstT=%s -D rowsPerWI=%d -D dstST=%s -D dstT1=%s -D cn=%d", ocl::memopTypeToStr(kertp), rowsPerWI, ocl::memopTypeToStr(CV_MAKETYPE(d, scalarcn)), ocl::memopTypeToStr(d), kercn); ocl::Kernel setK(haveMask ? "setMask" : "set", ocl::core::copyset_oclsrc, opts); if( !setK.empty() ) { ocl::KernelArg scalararg(ocl::KernelArg::CONSTANT, 0, 0, 0, buf, CV_ELEM_SIZE(d) * scalarcn); UMat mask; if( haveMask ) { mask = _mask.getUMat(); CV_Assert( mask.size() == size() && mask.type() == CV_8UC1 ); ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), dstarg = ocl::KernelArg::ReadWrite(*this); setK.args(maskarg, dstarg, scalararg); } else { ocl::KernelArg dstarg = ocl::KernelArg::WriteOnly(*this, cn, kercn); setK.args(dstarg, scalararg); } size_t globalsize[] = { (size_t)cols * cn / kercn, ((size_t)rows + rowsPerWI - 1) / rowsPerWI }; if( setK.run(2, globalsize, NULL, false) ) { CV_IMPL_ADD(CV_IMPL_OCL); return *this; } } } #endif Mat m = getMat(haveMask ? ACCESS_RW : ACCESS_WRITE); m.setTo(_value, _mask); return *this; } UMat& UMat::operator = (const Scalar& s) { setTo(s); return *this; } UMat UMat::t() const { UMat m; transpose(*this, m); return m; } UMat UMat::zeros(int rows, int cols, int type) { return UMat(rows, cols, type, Scalar::all(0)); } UMat UMat::zeros(Size size, int type) { return UMat(size, type, Scalar::all(0)); } UMat UMat::zeros(int ndims, const int* sz, int type) { return UMat(ndims, sz, type, Scalar::all(0)); } UMat UMat::ones(int rows, int cols, int type) { return UMat::ones(Size(cols, rows), type); } UMat UMat::ones(Size size, int type) { return UMat(size, type, Scalar(1)); } UMat UMat::ones(int ndims, const int* sz, int type) { return UMat(ndims, sz, type, Scalar(1)); } } /* End of file. */