/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include "opencv2/gpu/device/common.hpp" #include "opencv2/gpu/device/emulation.hpp" namespace cv { namespace gpu { namespace device { namespace hough { __device__ int g_counter; //////////////////////////////////////////////////////////////////////// // buildPointList const int PIXELS_PER_THREAD = 16; __global__ void buildPointList(const DevMem2Db src, unsigned int* list) { __shared__ int s_queues[4][32 * PIXELS_PER_THREAD]; __shared__ int s_qsize[4]; __shared__ int s_start[4]; const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y >= src.rows) return; if (threadIdx.x == 0) s_qsize[threadIdx.y] = 0; __syncthreads(); // fill the queue for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < src.cols; ++i, xx += blockDim.x) { if (src(y, xx)) { const unsigned int val = (y << 16) | xx; const int qidx = Emulation::smem::atomicAdd(&s_qsize[threadIdx.y], 1); s_queues[threadIdx.y][qidx] = val; } } __syncthreads(); // let one thread reserve the space required in the global list if (threadIdx.x == 0 && threadIdx.y == 0) { // find how many items are stored in each list int total_size = 0; for (int i = 0; i < blockDim.y; ++i) { s_start[i] = total_size; total_size += s_qsize[i]; } // calculate the offset in the global list const int global_offset = atomicAdd(&g_counter, total_size); for (int i = 0; i < blockDim.y; ++i) s_start[i] += global_offset; } __syncthreads(); // copy local queues to global queue const int qsize = s_qsize[threadIdx.y]; for(int i = threadIdx.x; i < qsize; i += blockDim.x) { const unsigned int val = s_queues[threadIdx.y][i]; list[s_start[threadIdx.y] + i] = val; } } int buildPointList_gpu(DevMem2Db src, unsigned int* list) { void* counter_ptr; cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) ); cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) ); const dim3 block(32, 4); const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y)); cudaSafeCall( cudaFuncSetCacheConfig(buildPointList, cudaFuncCachePreferShared) ); buildPointList<<>>(src, list); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); int total_count; cudaSafeCall( cudaMemcpy(&total_count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) ); return total_count; } //////////////////////////////////////////////////////////////////////// // linesAccum __global__ void linesAccumGlobal(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho) { const int n = blockIdx.x; const float ang = n * theta; float sin_ang; float cos_ang; sincosf(ang, &sin_ang, &cos_ang); const float tabSin = sin_ang * irho; const float tabCos = cos_ang * irho; for (int i = threadIdx.x; i < count; i += blockDim.x) { const unsigned int qvalue = list[i]; const int x = (qvalue & 0x0000FFFF); const int y = (qvalue >> 16) & 0x0000FFFF; int r = __float2int_rn(x * tabCos + y * tabSin); r += (numrho - 1) / 2; ::atomicAdd(accum.ptr(n + 1) + r + 1, 1); } } __global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho) { extern __shared__ int smem[]; for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x) smem[i] = 0; __syncthreads(); const int n = blockIdx.x; const float ang = n * theta; float sin_ang; float cos_ang; sincosf(ang, &sin_ang, &cos_ang); const float tabSin = sin_ang * irho; const float tabCos = cos_ang * irho; for (int i = threadIdx.x; i < count; i += blockDim.x) { const unsigned int qvalue = list[i]; const int x = (qvalue & 0x0000FFFF); const int y = (qvalue >> 16) & 0x0000FFFF; int r = __float2int_rn(x * tabCos + y * tabSin); r += (numrho - 1) / 2; Emulation::smem::atomicAdd(&smem[r + 1], 1); } __syncthreads(); for (int i = threadIdx.x; i < numrho; i += blockDim.x) accum(n + 1, i) = smem[i]; } void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock, bool has20) { const dim3 block(has20 ? 1024 : 512); const dim3 grid(accum.rows - 2); cudaSafeCall( cudaFuncSetCacheConfig(linesAccumShared, cudaFuncCachePreferShared) ); size_t smemSize = (accum.cols - 1) * sizeof(int); if (smemSize < sharedMemPerBlock - 1000) linesAccumShared<<>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2); else linesAccumGlobal<<>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // linesGetResult __global__ void linesGetResult(const DevMem2Di accum, float2* out, int* votes, const int maxSize, const float threshold, const float theta, const float rho, const int numrho) { __shared__ int smem[8][32]; int r = blockIdx.x * (blockDim.x - 2) + threadIdx.x; int n = blockIdx.y * (blockDim.y - 2) + threadIdx.y; if (r >= accum.cols || n >= accum.rows) return; smem[threadIdx.y][threadIdx.x] = accum(n, r); __syncthreads(); r -= 1; n -= 1; if (threadIdx.x == 0 || threadIdx.x == blockDim.x - 1 || threadIdx.y == 0 || threadIdx.y == blockDim.y - 1 || r >= accum.cols - 2 || n >= accum.rows - 2) return; if (smem[threadIdx.y][threadIdx.x] > threshold && smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y - 1][threadIdx.x] && smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y + 1][threadIdx.x] && smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y][threadIdx.x - 1] && smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y][threadIdx.x + 1]) { const float radius = (r - (numrho - 1) * 0.5f) * rho; const float angle = n * theta; const int ind = ::atomicAdd(&g_counter, 1); if (ind < maxSize) { out[ind] = make_float2(radius, angle); votes[ind] = smem[threadIdx.y][threadIdx.x]; } } } int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort) { void* counter_ptr; cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, g_counter) ); cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) ); const dim3 block(32, 8); const dim3 grid(divUp(accum.cols, block.x - 2), divUp(accum.rows, block.y - 2)); linesGetResult<<>>(accum, out, votes, maxSize, threshold, theta, rho, accum.cols - 2); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); int total_count; cudaSafeCall( cudaMemcpy(&total_count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) ); total_count = ::min(total_count, maxSize); if (doSort && total_count > 0) { thrust::device_ptr out_ptr(out); thrust::device_ptr votes_ptr(votes); thrust::sort_by_key(votes_ptr, votes_ptr + total_count, out_ptr, thrust::greater()); } return total_count; } } }}}