/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" ////////////////////////////////////////// kmeans //////////////////////////////////////////// namespace cv { static void generateRandomCenter(const std::vector& box, float* center, RNG& rng) { size_t j, dims = box.size(); float margin = 1.f/dims; for( j = 0; j < dims; j++ ) center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0]; } class KMeansPPDistanceComputer : public ParallelLoopBody { public: KMeansPPDistanceComputer( float *_tdist2, const float *_data, const float *_dist, int _dims, size_t _step, size_t _stepci ) : tdist2(_tdist2), data(_data), dist(_dist), dims(_dims), step(_step), stepci(_stepci) { } void operator()( const cv::Range& range ) const { const int begin = range.start; const int end = range.end; for ( int i = begin; i(0); size_t step = _data.step/sizeof(data[0]); std::vector _centers(K); int* centers = &_centers[0]; std::vector _dist(N*3); float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N; double sum0 = 0; centers[0] = (unsigned)rng % N; for( i = 0; i < N; i++ ) { dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims); sum0 += dist[i]; } for( k = 1; k < K; k++ ) { double bestSum = DBL_MAX; int bestCenter = -1; for( j = 0; j < trials; j++ ) { double p = (double)rng*sum0, s = 0; for( i = 0; i < N-1; i++ ) if( (p -= dist[i]) <= 0 ) break; int ci = i; parallel_for_(Range(0, N), KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci)); for( i = 0; i < N; i++ ) { s += tdist2[i]; } if( s < bestSum ) { bestSum = s; bestCenter = ci; std::swap(tdist, tdist2); } } centers[k] = bestCenter; sum0 = bestSum; std::swap(dist, tdist); } for( k = 0; k < K; k++ ) { const float* src = data + step*centers[k]; float* dst = _out_centers.ptr(k); for( j = 0; j < dims; j++ ) dst[j] = src[j]; } } class KMeansDistanceComputer : public ParallelLoopBody { public: KMeansDistanceComputer( double *_distances, int *_labels, const Mat& _data, const Mat& _centers ) : distances(_distances), labels(_labels), data(_data), centers(_centers) { } void operator()( const Range& range ) const { const int begin = range.start; const int end = range.end; const int K = centers.rows; const int dims = centers.cols; for( int i = begin; i(i); int k_best = 0; double min_dist = DBL_MAX; for( int k = 0; k < K; k++ ) { const float* center = centers.ptr(k); const double dist = normL2Sqr(sample, center, dims); if( min_dist > dist ) { min_dist = dist; k_best = k; } } distances[i] = min_dist; labels[i] = k_best; } } private: KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // to quiet MSVC double *distances; int *labels; const Mat& data; const Mat& centers; }; } double cv::kmeans( InputArray _data, int K, InputOutputArray _bestLabels, TermCriteria criteria, int attempts, int flags, OutputArray _centers ) { const int SPP_TRIALS = 3; Mat data0 = _data.getMat(); bool isrow = data0.rows == 1 && data0.channels() > 1; int N = !isrow ? data0.rows : data0.cols; int dims = (!isrow ? data0.cols : 1)*data0.channels(); int type = data0.depth(); attempts = std::max(attempts, 1); CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 ); CV_Assert( N >= K ); Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast(data0.step)); _bestLabels.create(N, 1, CV_32S, -1, true); Mat _labels, best_labels = _bestLabels.getMat(); if( flags & CV_KMEANS_USE_INITIAL_LABELS ) { CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) && best_labels.cols*best_labels.rows == N && best_labels.type() == CV_32S && best_labels.isContinuous()); best_labels.copyTo(_labels); } else { if( !((best_labels.cols == 1 || best_labels.rows == 1) && best_labels.cols*best_labels.rows == N && best_labels.type() == CV_32S && best_labels.isContinuous())) best_labels.create(N, 1, CV_32S); _labels.create(best_labels.size(), best_labels.type()); } int* labels = _labels.ptr(); Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type); std::vector counters(K); std::vector _box(dims); Vec2f* box = &_box[0]; double best_compactness = DBL_MAX, compactness = 0; RNG& rng = theRNG(); int a, iter, i, j, k; if( criteria.type & TermCriteria::EPS ) criteria.epsilon = std::max(criteria.epsilon, 0.); else criteria.epsilon = FLT_EPSILON; criteria.epsilon *= criteria.epsilon; if( criteria.type & TermCriteria::COUNT ) criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100); else criteria.maxCount = 100; if( K == 1 ) { attempts = 1; criteria.maxCount = 2; } const float* sample = data.ptr(0); for( j = 0; j < dims; j++ ) box[j] = Vec2f(sample[j], sample[j]); for( i = 1; i < N; i++ ) { sample = data.ptr(i); for( j = 0; j < dims; j++ ) { float v = sample[j]; box[j][0] = std::min(box[j][0], v); box[j][1] = std::max(box[j][1], v); } } for( a = 0; a < attempts; a++ ) { double max_center_shift = DBL_MAX; for( iter = 0;; ) { swap(centers, old_centers); if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) ) { if( flags & KMEANS_PP_CENTERS ) generateCentersPP(data, centers, K, rng, SPP_TRIALS); else { for( k = 0; k < K; k++ ) generateRandomCenter(_box, centers.ptr(k), rng); } } else { if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) ) { for( i = 0; i < N; i++ ) CV_Assert( (unsigned)labels[i] < (unsigned)K ); } // compute centers centers = Scalar(0); for( k = 0; k < K; k++ ) counters[k] = 0; for( i = 0; i < N; i++ ) { sample = data.ptr(i); k = labels[i]; float* center = centers.ptr(k); j=0; #if CV_ENABLE_UNROLLED for(; j <= dims - 4; j += 4 ) { float t0 = center[j] + sample[j]; float t1 = center[j+1] + sample[j+1]; center[j] = t0; center[j+1] = t1; t0 = center[j+2] + sample[j+2]; t1 = center[j+3] + sample[j+3]; center[j+2] = t0; center[j+3] = t1; } #endif for( ; j < dims; j++ ) center[j] += sample[j]; counters[k]++; } if( iter > 0 ) max_center_shift = 0; for( k = 0; k < K; k++ ) { if( counters[k] != 0 ) continue; // if some cluster appeared to be empty then: // 1. find the biggest cluster // 2. find the farthest from the center point in the biggest cluster // 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster. int max_k = 0; for( int k1 = 1; k1 < K; k1++ ) { if( counters[max_k] < counters[k1] ) max_k = k1; } double max_dist = 0; int farthest_i = -1; float* new_center = centers.ptr(k); float* old_center = centers.ptr(max_k); float* _old_center = temp.ptr(); // normalized float scale = 1.f/counters[max_k]; for( j = 0; j < dims; j++ ) _old_center[j] = old_center[j]*scale; for( i = 0; i < N; i++ ) { if( labels[i] != max_k ) continue; sample = data.ptr(i); double dist = normL2Sqr(sample, _old_center, dims); if( max_dist <= dist ) { max_dist = dist; farthest_i = i; } } counters[max_k]--; counters[k]++; labels[farthest_i] = k; sample = data.ptr(farthest_i); for( j = 0; j < dims; j++ ) { old_center[j] -= sample[j]; new_center[j] += sample[j]; } } for( k = 0; k < K; k++ ) { float* center = centers.ptr(k); CV_Assert( counters[k] != 0 ); float scale = 1.f/counters[k]; for( j = 0; j < dims; j++ ) center[j] *= scale; if( iter > 0 ) { double dist = 0; const float* old_center = old_centers.ptr(k); for( j = 0; j < dims; j++ ) { double t = center[j] - old_center[j]; dist += t*t; } max_center_shift = std::max(max_center_shift, dist); } } } if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon ) break; // assign labels Mat dists(1, N, CV_64F); double* dist = dists.ptr(0); parallel_for_(Range(0, N), KMeansDistanceComputer(dist, labels, data, centers)); compactness = 0; for( i = 0; i < N; i++ ) { compactness += dist[i]; } } if( compactness < best_compactness ) { best_compactness = compactness; if( _centers.needed() ) centers.copyTo(_centers); _labels.copyTo(best_labels); } } return best_compactness; }