/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_GPUIMGPROC_HPP__ #define __OPENCV_GPUIMGPROC_HPP__ #ifndef __cplusplus # error gpuimgproc.hpp header must be compiled as C++ #endif #include "opencv2/core/gpu.hpp" #include "opencv2/imgproc.hpp" #if defined __GNUC__ #define __OPENCV_GPUIMGPROC_DEPR_BEFORE__ #define __OPENCV_GPUIMGPROC_DEPR_AFTER__ __attribute__ ((deprecated)) #elif (defined WIN32 || defined _WIN32) #define __OPENCV_GPUIMGPROC_DEPR_BEFORE__ __declspec(deprecated) #define __OPENCV_GPUIMGPROC_DEPR_AFTER__ #else #define __OPENCV_GPUIMGPROC_DEPR_BEFORE__ #define __OPENCV_GPUIMGPROC_DEPR_AFTER__ #endif namespace cv { namespace gpu { /////////////////////////// Color Processing /////////////////////////// //! converts image from one color space to another CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null()); enum { // Bayer Demosaicing (Malvar, He, and Cutler) COLOR_BayerBG2BGR_MHT = 256, COLOR_BayerGB2BGR_MHT = 257, COLOR_BayerRG2BGR_MHT = 258, COLOR_BayerGR2BGR_MHT = 259, COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT, COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT, COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT, COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT, COLOR_BayerBG2GRAY_MHT = 260, COLOR_BayerGB2GRAY_MHT = 261, COLOR_BayerRG2GRAY_MHT = 262, COLOR_BayerGR2GRAY_MHT = 263 }; CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null()); //! swap channels //! dstOrder - Integer array describing how channel values are permutated. The n-th entry //! of the array contains the number of the channel that is stored in the n-th channel of //! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR //! channel order. CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null()); //! Routines for correcting image color gamma CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null()); enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL}; //! Composite two images using alpha opacity values contained in each image //! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null()); ////////////////////////////// Histogram /////////////////////////////// //! Calculates histogram for 8u one channel image //! Output hist will have one row, 256 cols and CV32SC1 type. CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null()); //! normalizes the grayscale image brightness and contrast by normalizing its histogram CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, InputOutputArray buf, Stream& stream = Stream::Null()); static inline void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) { GpuMat buf; gpu::equalizeHist(src, dst, buf, stream); } class CV_EXPORTS CLAHE : public cv::CLAHE { public: using cv::CLAHE::apply; virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; }; CV_EXPORTS Ptr createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); //! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type. CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel); //! Calculates histogram with evenly distributed bins for signle channel source. //! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types. //! Output hist will have one row and histSize cols and CV_32SC1 type. CV_EXPORTS void histEven(InputArray src, OutputArray hist, InputOutputArray buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); static inline void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) { GpuMat buf; gpu::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } //! Calculates histogram with evenly distributed bins for four-channel source. //! All channels of source are processed separately. //! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types. //! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type. CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], InputOutputArray buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); static inline void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()) { GpuMat buf; gpu::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } //! Calculates histogram with bins determined by levels array. //! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. //! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types. //! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type. CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, InputOutputArray buf, Stream& stream = Stream::Null()); static inline void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null()) { GpuMat buf; gpu::histRange(src, hist, levels, buf, stream); } //! Calculates histogram with bins determined by levels array. //! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. //! All channels of source are processed separately. //! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types. //! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type. CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], InputOutputArray buf, Stream& stream = Stream::Null()); static inline void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()) { GpuMat buf; gpu::histRange(src, hist, levels, buf, stream); } //////////////////////////////// Canny //////////////////////////////// class CV_EXPORTS CannyEdgeDetector : public Algorithm { public: virtual void detect(InputArray image, OutputArray edges) = 0; virtual void detect(InputArray dx, InputArray dy, OutputArray edges) = 0; virtual void setLowThreshold(double low_thresh) = 0; virtual double getLowThreshold() const = 0; virtual void setHighThreshold(double high_thresh) = 0; virtual double getHighThreshold() const = 0; virtual void setAppertureSize(int apperture_size) = 0; virtual int getAppertureSize() const = 0; virtual void setL2Gradient(bool L2gradient) = 0; virtual bool getL2Gradient() const = 0; }; CV_EXPORTS Ptr createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); // obsolete __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void Canny(InputArray image, OutputArray edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void Canny(InputArray image, OutputArray edges, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) { gpu::createCannyEdgeDetector(low_thresh, high_thresh, apperture_size, L2gradient)->detect(image, edges); } __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void Canny(InputArray dx, InputArray dy, OutputArray edges, double low_thresh, double high_thresh, bool L2gradient = false) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void Canny(InputArray dx, InputArray dy, OutputArray edges, double low_thresh, double high_thresh, bool L2gradient) { gpu::createCannyEdgeDetector(low_thresh, high_thresh, 3, L2gradient)->detect(dx, dy, edges); } /////////////////////////// Hough Transform //////////////////////////// ////////////////////////////////////// // HoughLines class CV_EXPORTS HoughLinesDetector : public Algorithm { public: virtual void detect(InputArray src, OutputArray lines) = 0; virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0; virtual void setRho(float rho) = 0; virtual float getRho() const = 0; virtual void setTheta(float theta) = 0; virtual float getTheta() const = 0; virtual void setThreshold(int threshold) = 0; virtual int getThreshold() const = 0; virtual void setDoSort(bool doSort) = 0; virtual bool getDoSort() const = 0; virtual void setMaxLines(int maxLines) = 0; virtual int getMaxLines() const = 0; }; CV_EXPORTS Ptr createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); // obsolete __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold, bool doSort, int maxLines) { gpu::createHoughLinesDetector(rho, theta, threshold, doSort, maxLines)->detect(src, lines); } ////////////////////////////////////// // HoughLinesP //! finds line segments in the black-n-white image using probabalistic Hough transform class CV_EXPORTS HoughSegmentDetector : public Algorithm { public: virtual void detect(InputArray src, OutputArray lines) = 0; virtual void setRho(float rho) = 0; virtual float getRho() const = 0; virtual void setTheta(float theta) = 0; virtual float getTheta() const = 0; virtual void setMinLineLength(int minLineLength) = 0; virtual int getMinLineLength() const = 0; virtual void setMaxLineGap(int maxLineGap) = 0; virtual int getMaxLineGap() const = 0; virtual void setMaxLines(int maxLines) = 0; virtual int getMaxLines() const = 0; }; CV_EXPORTS Ptr createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096); // obsolete __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLinesP(InputArray src, OutputArray lines, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void HoughLinesP(InputArray src, OutputArray lines, float rho, float theta, int minLineLength, int maxLineGap, int maxLines) { gpu::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap, maxLines)->detect(src, lines); } ////////////////////////////////////// // HoughCircles class CV_EXPORTS HoughCirclesDetector : public Algorithm { public: virtual void detect(InputArray src, OutputArray circles) = 0; virtual void setDp(float dp) = 0; virtual float getDp() const = 0; virtual void setMinDist(float minDist) = 0; virtual float getMinDist() const = 0; virtual void setCannyThreshold(int cannyThreshold) = 0; virtual int getCannyThreshold() const = 0; virtual void setVotesThreshold(int votesThreshold) = 0; virtual int getVotesThreshold() const = 0; virtual void setMinRadius(int minRadius) = 0; virtual int getMinRadius() const = 0; virtual void setMaxRadius(int maxRadius) = 0; virtual int getMaxRadius() const = 0; virtual void setMaxCircles(int maxCircles) = 0; virtual int getMaxCircles() const = 0; }; CV_EXPORTS Ptr createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); // obsolete __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughCircles(InputArray src, OutputArray circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void HoughCircles(InputArray src, OutputArray circles, int /*method*/, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles) { gpu::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles)->detect(src, circles); } ////////////////////////////////////// // GeneralizedHough //! finds arbitrary template in the grayscale image using Generalized Hough Transform //! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. //! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. class CV_EXPORTS GeneralizedHough : public Algorithm { public: static Ptr create(int method); //! set template to search virtual void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)) = 0; virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0; //! find template on image virtual void detect(InputArray image, OutputArray positions, int cannyThreshold = 100) = 0; virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions) = 0; virtual void downloadResults(InputArray d_positions, OutputArray h_positions, OutputArray h_votes = noArray()) = 0; }; ////////////////////////// Corners Detection /////////////////////////// class CV_EXPORTS CornernessCriteria : public Algorithm { public: virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0; }; //! computes Harris cornerness criteria at each image pixel CV_EXPORTS Ptr createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); //! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria CV_EXPORTS Ptr createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101); // obsolete __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void cornerHarris(InputArray src, OutputArray dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null()) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void cornerHarris(InputArray src, OutputArray dst, int blockSize, int ksize, double k, int borderType, Stream& stream) { gpu::createHarrisCorner(src.type(), blockSize, ksize, k, borderType)->compute(src, dst, stream); } __OPENCV_GPUIMGPROC_DEPR_BEFORE__ void cornerMinEigenVal(InputArray src, OutputArray dst, int blockSize, int ksize, int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null()) __OPENCV_GPUIMGPROC_DEPR_AFTER__; inline void cornerMinEigenVal(InputArray src, OutputArray dst, int blockSize, int ksize, int borderType, Stream& stream) { gpu::createMinEigenValCorner(src.type(), blockSize, ksize, borderType)->compute(src, dst, stream); } ////////////////////////// Corners Detection /////////////////////////// class CV_EXPORTS CornersDetector : public Algorithm { public: //! return 1 rows matrix with CV_32FC2 type virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0; }; CV_EXPORTS Ptr createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04); ///////////////////////////// Mean Shift ////////////////////////////// //! Does mean shift filtering on GPU. CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); //! Does mean shift procedure on GPU. CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); //! Does mean shift segmentation with elimination of small regions. CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); /////////////////////////// Match Template //////////////////////////// struct CV_EXPORTS MatchTemplateBuf { Size user_block_size; GpuMat imagef, templf; std::vector images; std::vector image_sums; std::vector image_sqsums; }; //! computes the proximity map for the raster template and the image where the template is searched for CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null()); //! computes the proximity map for the raster template and the image where the template is searched for CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null()); ////////////////////////// Bilateral Filter /////////////////////////// //! Performa bilateral filtering of passsed image CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null()); ///////////////////////////// Blending //////////////////////////////// //! performs linear blending of two images //! to avoid accuracy errors sum of weigths shouldn't be very close to zero CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, GpuMat& result, Stream& stream = Stream::Null()); }} // namespace cv { namespace gpu { #undef __OPENCV_GPUIMGPROC_DEPR_BEFORE__ #undef __OPENCV_GPUIMGPROC_DEPR_AFTER__ #endif /* __OPENCV_GPUIMGPROC_HPP__ */