/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2008, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* OpenCV wrapper of reference implementation of [1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013 http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf @author Eugene Khvedchenya */ #include "precomp.hpp" #include "akaze/AKAZEFeatures.h" namespace cv { AKAZE::AKAZE(int _descriptor, int _descriptor_size, int _descriptor_channels) : descriptor_channels(_descriptor_channels) , descriptor(_descriptor) , descriptor_size(_descriptor_size) { } AKAZE::~AKAZE() { } // returns the descriptor size in bytes int AKAZE::descriptorSize() const { if (descriptor < MLDB_UPRIGHT) { return 64; } else { // We use the full length binary descriptor -> 486 bits if (descriptor_size == 0) { int t = (6 + 36 + 120) * descriptor_channels; return (int)ceil(t / 8.); } else { // We use the random bit selection length binary descriptor return (int)ceil(descriptor_size / 8.); } } } // returns the descriptor type int AKAZE::descriptorType() const { if (descriptor < MLDB_UPRIGHT) { return CV_32F; } else { return CV_8U; } } // returns the default norm type int AKAZE::defaultNorm() const { if (descriptor < MLDB_UPRIGHT) { return NORM_L2; } else { return NORM_HAMMING; } } void AKAZE::operator()(InputArray image, InputArray mask, std::vector& keypoints, OutputArray descriptors, bool useProvidedKeypoints) const { cv::Mat img = image.getMat(); if (img.type() != CV_8UC1) cvtColor(image, img, COLOR_BGR2GRAY); Mat img1_32; img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0); cv::Mat& desc = descriptors.getMatRef(); AKAZEOptions options; options.img_width = img.cols; options.img_height = img.rows; AKAZEFeatures impl(options); impl.Create_Nonlinear_Scale_Space(img1_32); if (!useProvidedKeypoints) { impl.Feature_Detection(keypoints); } if (!mask.empty()) { cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat()); } impl.Compute_Descriptors(keypoints, desc); CV_Assert((!desc.rows || desc.cols == descriptorSize())); CV_Assert((!desc.rows || (desc.type() == descriptorType()))); } void AKAZE::detectImpl(InputArray image, std::vector& keypoints, InputArray mask) const { cv::Mat img = image.getMat(); if (img.type() != CV_8UC1) cvtColor(image, img, COLOR_BGR2GRAY); Mat img1_32; img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0); AKAZEOptions options; options.img_width = img.cols; options.img_height = img.rows; AKAZEFeatures impl(options); impl.Create_Nonlinear_Scale_Space(img1_32); impl.Feature_Detection(keypoints); if (!mask.empty()) { cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat()); } } void AKAZE::computeImpl(InputArray image, std::vector& keypoints, OutputArray descriptors) const { cv::Mat img = image.getMat(); if (img.type() != CV_8UC1) cvtColor(image, img, COLOR_BGR2GRAY); Mat img1_32; img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0); cv::Mat& desc = descriptors.getMatRef(); AKAZEOptions options; options.img_width = img.cols; options.img_height = img.rows; AKAZEFeatures impl(options); impl.Create_Nonlinear_Scale_Space(img1_32); impl.Compute_Descriptors(keypoints, desc); CV_Assert((!desc.rows || desc.cols == descriptorSize())); CV_Assert((!desc.rows || (desc.type() == descriptorType()))); } }