layer {
  name: "data"
  type: "AnnotatedData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    mean_value: 104
    mean_value: 117
    mean_value: 123
    resize_param {
      prob: 1
      resize_mode: WARP
      height: 300
      width: 300
      interp_mode: LINEAR
      interp_mode: AREA
      interp_mode: NEAREST
      interp_mode: CUBIC
      interp_mode: LANCZOS4
    }
    emit_constraint {
      emit_type: CENTER
    }
    distort_param {
      brightness_prob: 0.5
      brightness_delta: 32
      contrast_prob: 0.5
      contrast_lower: 0.5
      contrast_upper: 1.5
      hue_prob: 0.5
      hue_delta: 18
      saturation_prob: 0.5
      saturation_lower: 0.5
      saturation_upper: 1.5
      random_order_prob: 0.0
    }
    expand_param {
      prob: 0.5
      max_expand_ratio: 4.0
    }
  }
  data_param {
    source: "train_lmdb/"
    batch_size: 16
    backend: LMDB
  }
  annotated_data_param {
    batch_sampler {
      max_sample: 1
      max_trials: 1
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.1
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.3
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.5
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.7
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.9
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.3
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        max_jaccard_overlap: 1.0
      }
      max_sample: 1
      max_trials: 50
    }
  }
}

layer {
  name: "data_bn"
  type: "BatchNorm"
  bottom: "data"
  top: "data_bn"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "data_scale"
  type: "Scale"
  bottom: "data_bn"
  top: "data_bn"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "conv1_h"
  type: "Convolution"
  bottom: "data_bn"
  top: "conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 32
    pad: 3
    kernel_size: 7
    stride: 2
    weight_filler {
      type: "msra"
      variance_norm: FAN_OUT
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv1_bn_h"
  type: "BatchNorm"
  bottom: "conv1_h"
  top: "conv1_h"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "conv1_scale_h"
  type: "Scale"
  bottom: "conv1_h"
  top: "conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "conv1_relu"
  type: "ReLU"
  bottom: "conv1_h"
  top: "conv1_h"
}
layer {
  name: "conv1_pool"
  type: "Pooling"
  bottom: "conv1_h"
  top: "conv1_pool"
  pooling_param {
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "layer_64_1_conv1_h"
  type: "Convolution"
  bottom: "conv1_pool"
  top: "layer_64_1_conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 32
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_64_1_bn2_h"
  type: "BatchNorm"
  bottom: "layer_64_1_conv1_h"
  top: "layer_64_1_conv1_h"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_64_1_scale2_h"
  type: "Scale"
  bottom: "layer_64_1_conv1_h"
  top: "layer_64_1_conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_64_1_relu2"
  type: "ReLU"
  bottom: "layer_64_1_conv1_h"
  top: "layer_64_1_conv1_h"
}
layer {
  name: "layer_64_1_conv2_h"
  type: "Convolution"
  bottom: "layer_64_1_conv1_h"
  top: "layer_64_1_conv2_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 32
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_64_1_sum"
  type: "Eltwise"
  bottom: "layer_64_1_conv2_h"
  bottom: "conv1_pool"
  top: "layer_64_1_sum"
}
layer {
  name: "layer_128_1_bn1_h"
  type: "BatchNorm"
  bottom: "layer_64_1_sum"
  top: "layer_128_1_bn1_h"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_128_1_scale1_h"
  type: "Scale"
  bottom: "layer_128_1_bn1_h"
  top: "layer_128_1_bn1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_128_1_relu1"
  type: "ReLU"
  bottom: "layer_128_1_bn1_h"
  top: "layer_128_1_bn1_h"
}
layer {
  name: "layer_128_1_conv1_h"
  type: "Convolution"
  bottom: "layer_128_1_bn1_h"
  top: "layer_128_1_conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_128_1_bn2"
  type: "BatchNorm"
  bottom: "layer_128_1_conv1_h"
  top: "layer_128_1_conv1_h"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_128_1_scale2"
  type: "Scale"
  bottom: "layer_128_1_conv1_h"
  top: "layer_128_1_conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_128_1_relu2"
  type: "ReLU"
  bottom: "layer_128_1_conv1_h"
  top: "layer_128_1_conv1_h"
}
layer {
  name: "layer_128_1_conv2"
  type: "Convolution"
  bottom: "layer_128_1_conv1_h"
  top: "layer_128_1_conv2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_128_1_conv_expand_h"
  type: "Convolution"
  bottom: "layer_128_1_bn1_h"
  top: "layer_128_1_conv_expand_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_128_1_sum"
  type: "Eltwise"
  bottom: "layer_128_1_conv2"
  bottom: "layer_128_1_conv_expand_h"
  top: "layer_128_1_sum"
}
layer {
  name: "layer_256_1_bn1"
  type: "BatchNorm"
  bottom: "layer_128_1_sum"
  top: "layer_256_1_bn1"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_256_1_scale1"
  type: "Scale"
  bottom: "layer_256_1_bn1"
  top: "layer_256_1_bn1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_256_1_relu1"
  type: "ReLU"
  bottom: "layer_256_1_bn1"
  top: "layer_256_1_bn1"
}
layer {
  name: "layer_256_1_conv1"
  type: "Convolution"
  bottom: "layer_256_1_bn1"
  top: "layer_256_1_conv1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_256_1_bn2"
  type: "BatchNorm"
  bottom: "layer_256_1_conv1"
  top: "layer_256_1_conv1"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_256_1_scale2"
  type: "Scale"
  bottom: "layer_256_1_conv1"
  top: "layer_256_1_conv1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_256_1_relu2"
  type: "ReLU"
  bottom: "layer_256_1_conv1"
  top: "layer_256_1_conv1"
}
layer {
  name: "layer_256_1_conv2"
  type: "Convolution"
  bottom: "layer_256_1_conv1"
  top: "layer_256_1_conv2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_256_1_conv_expand"
  type: "Convolution"
  bottom: "layer_256_1_bn1"
  top: "layer_256_1_conv_expand"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_256_1_sum"
  type: "Eltwise"
  bottom: "layer_256_1_conv2"
  bottom: "layer_256_1_conv_expand"
  top: "layer_256_1_sum"
}
layer {
  name: "layer_512_1_bn1"
  type: "BatchNorm"
  bottom: "layer_256_1_sum"
  top: "layer_512_1_bn1"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_512_1_scale1"
  type: "Scale"
  bottom: "layer_512_1_bn1"
  top: "layer_512_1_bn1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_512_1_relu1"
  type: "ReLU"
  bottom: "layer_512_1_bn1"
  top: "layer_512_1_bn1"
}
layer {
  name: "layer_512_1_conv1_h"
  type: "Convolution"
  bottom: "layer_512_1_bn1"
  top: "layer_512_1_conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 128
    bias_term: false
    pad: 1
    kernel_size: 3
    stride: 1 # 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_512_1_bn2_h"
  type: "BatchNorm"
  bottom: "layer_512_1_conv1_h"
  top: "layer_512_1_conv1_h"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "layer_512_1_scale2_h"
  type: "Scale"
  bottom: "layer_512_1_conv1_h"
  top: "layer_512_1_conv1_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "layer_512_1_relu2"
  type: "ReLU"
  bottom: "layer_512_1_conv1_h"
  top: "layer_512_1_conv1_h"
}
layer {
  name: "layer_512_1_conv2_h"
  type: "Convolution"
  bottom: "layer_512_1_conv1_h"
  top: "layer_512_1_conv2_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 2 # 1
    kernel_size: 3
    stride: 1
    dilation: 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_512_1_conv_expand_h"
  type: "Convolution"
  bottom: "layer_512_1_bn1"
  top: "layer_512_1_conv_expand_h"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  convolution_param {
    num_output: 256
    bias_term: false
    pad: 0
    kernel_size: 1
    stride: 1 # 2
    weight_filler {
      type: "msra"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "layer_512_1_sum"
  type: "Eltwise"
  bottom: "layer_512_1_conv2_h"
  bottom: "layer_512_1_conv_expand_h"
  top: "layer_512_1_sum"
}
layer {
  name: "last_bn_h"
  type: "BatchNorm"
  bottom: "layer_512_1_sum"
  top: "layer_512_1_sum"
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
  param {
    lr_mult: 0.0
  }
}
layer {
  name: "last_scale_h"
  type: "Scale"
  bottom: "layer_512_1_sum"
  top: "layer_512_1_sum"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 1.0
  }
  scale_param {
    bias_term: true
  }
}
layer {
  name: "last_relu"
  type: "ReLU"
  bottom: "layer_512_1_sum"
  top: "fc7"
}

layer {
  name: "conv6_1_h"
  type: "Convolution"
  bottom: "fc7"
  top: "conv6_1_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv6_1_relu"
  type: "ReLU"
  bottom: "conv6_1_h"
  top: "conv6_1_h"
}
layer {
  name: "conv6_2_h"
  type: "Convolution"
  bottom: "conv6_1_h"
  top: "conv6_2_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv6_2_relu"
  type: "ReLU"
  bottom: "conv6_2_h"
  top: "conv6_2_h"
}
layer {
  name: "conv7_1_h"
  type: "Convolution"
  bottom: "conv6_2_h"
  top: "conv7_1_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv7_1_relu"
  type: "ReLU"
  bottom: "conv7_1_h"
  top: "conv7_1_h"
}
layer {
  name: "conv7_2_h"
  type: "Convolution"
  bottom: "conv7_1_h"
  top: "conv7_2_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv7_2_relu"
  type: "ReLU"
  bottom: "conv7_2_h"
  top: "conv7_2_h"
}
layer {
  name: "conv8_1_h"
  type: "Convolution"
  bottom: "conv7_2_h"
  top: "conv8_1_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv8_1_relu"
  type: "ReLU"
  bottom: "conv8_1_h"
  top: "conv8_1_h"
}
layer {
  name: "conv8_2_h"
  type: "Convolution"
  bottom: "conv8_1_h"
  top: "conv8_2_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv8_2_relu"
  type: "ReLU"
  bottom: "conv8_2_h"
  top: "conv8_2_h"
}
layer {
  name: "conv9_1_h"
  type: "Convolution"
  bottom: "conv8_2_h"
  top: "conv9_1_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv9_1_relu"
  type: "ReLU"
  bottom: "conv9_1_h"
  top: "conv9_1_h"
}
layer {
  name: "conv9_2_h"
  type: "Convolution"
  bottom: "conv9_1_h"
  top: "conv9_2_h"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 0
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv9_2_relu"
  type: "ReLU"
  bottom: "conv9_2_h"
  top: "conv9_2_h"
}
layer {
  name: "conv4_3_norm"
  type: "Normalize"
  bottom: "layer_256_1_bn1"
  top: "conv4_3_norm"
  norm_param {
    across_spatial: false
    scale_filler {
      type: "constant"
      value: 20
    }
    channel_shared: false
  }
}
layer {
  name: "conv4_3_norm_mbox_loc"
  type: "Convolution"
  bottom: "conv4_3_norm"
  top: "conv4_3_norm_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv4_3_norm_mbox_loc_perm"
  type: "Permute"
  bottom: "conv4_3_norm_mbox_loc"
  top: "conv4_3_norm_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv4_3_norm_mbox_loc_perm"
  top: "conv4_3_norm_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_conf"
  type: "Convolution"
  bottom: "conv4_3_norm"
  top: "conv4_3_norm_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8 # 84
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv4_3_norm_mbox_conf_perm"
  type: "Permute"
  bottom: "conv4_3_norm_mbox_conf"
  top: "conv4_3_norm_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv4_3_norm_mbox_conf_perm"
  top: "conv4_3_norm_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv4_3_norm"
  bottom: "data"
  top: "conv4_3_norm_mbox_priorbox"
  prior_box_param {
    min_size: 30.0
    max_size: 60.0
    aspect_ratio: 2
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 8
    offset: 0.5
  }
}
layer {
  name: "fc7_mbox_loc"
  type: "Convolution"
  bottom: "fc7"
  top: "fc7_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "fc7_mbox_loc_perm"
  type: "Permute"
  bottom: "fc7_mbox_loc"
  top: "fc7_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "fc7_mbox_loc_flat"
  type: "Flatten"
  bottom: "fc7_mbox_loc_perm"
  top: "fc7_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "fc7_mbox_conf"
  type: "Convolution"
  bottom: "fc7"
  top: "fc7_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 12 # 126
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "fc7_mbox_conf_perm"
  type: "Permute"
  bottom: "fc7_mbox_conf"
  top: "fc7_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "fc7_mbox_conf_flat"
  type: "Flatten"
  bottom: "fc7_mbox_conf_perm"
  top: "fc7_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "fc7_mbox_priorbox"
  type: "PriorBox"
  bottom: "fc7"
  bottom: "data"
  top: "fc7_mbox_priorbox"
  prior_box_param {
    min_size: 60.0
    max_size: 111.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 16
    offset: 0.5
  }
}
layer {
  name: "conv6_2_mbox_loc"
  type: "Convolution"
  bottom: "conv6_2_h"
  top: "conv6_2_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv6_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv6_2_mbox_loc"
  top: "conv6_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv6_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv6_2_mbox_loc_perm"
  top: "conv6_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv6_2_mbox_conf"
  type: "Convolution"
  bottom: "conv6_2_h"
  top: "conv6_2_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 12 # 126
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv6_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv6_2_mbox_conf"
  top: "conv6_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv6_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv6_2_mbox_conf_perm"
  top: "conv6_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv6_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv6_2_h"
  bottom: "data"
  top: "conv6_2_mbox_priorbox"
  prior_box_param {
    min_size: 111.0
    max_size: 162.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 32
    offset: 0.5
  }
}
layer {
  name: "conv7_2_mbox_loc"
  type: "Convolution"
  bottom: "conv7_2_h"
  top: "conv7_2_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv7_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv7_2_mbox_loc"
  top: "conv7_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv7_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv7_2_mbox_loc_perm"
  top: "conv7_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv7_2_mbox_conf"
  type: "Convolution"
  bottom: "conv7_2_h"
  top: "conv7_2_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 12 # 126
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv7_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv7_2_mbox_conf"
  top: "conv7_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv7_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv7_2_mbox_conf_perm"
  top: "conv7_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv7_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv7_2_h"
  bottom: "data"
  top: "conv7_2_mbox_priorbox"
  prior_box_param {
    min_size: 162.0
    max_size: 213.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 64
    offset: 0.5
  }
}
layer {
  name: "conv8_2_mbox_loc"
  type: "Convolution"
  bottom: "conv8_2_h"
  top: "conv8_2_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 0
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv8_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv8_2_mbox_loc"
  top: "conv8_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv8_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv8_2_mbox_loc_perm"
  top: "conv8_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv8_2_mbox_conf"
  type: "Convolution"
  bottom: "conv8_2_h"
  top: "conv8_2_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8 # 84
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv8_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv8_2_mbox_conf"
  top: "conv8_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv8_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv8_2_mbox_conf_perm"
  top: "conv8_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv8_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv8_2_h"
  bottom: "data"
  top: "conv8_2_mbox_priorbox"
  prior_box_param {
    min_size: 213.0
    max_size: 264.0
    aspect_ratio: 2
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 100
    offset: 0.5
  }
}
layer {
  name: "conv9_2_mbox_loc"
  type: "Convolution"
  bottom: "conv9_2_h"
  top: "conv9_2_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv9_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv9_2_mbox_loc"
  top: "conv9_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv9_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv9_2_mbox_loc_perm"
  top: "conv9_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv9_2_mbox_conf"
  type: "Convolution"
  bottom: "conv9_2_h"
  top: "conv9_2_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 8 # 84
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv9_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv9_2_mbox_conf"
  top: "conv9_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv9_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv9_2_mbox_conf_perm"
  top: "conv9_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv9_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv9_2_h"
  bottom: "data"
  top: "conv9_2_mbox_priorbox"
  prior_box_param {
    min_size: 264.0
    max_size: 315.0
    aspect_ratio: 2
    flip: true
    clip: false
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
    step: 300
    offset: 0.5
  }
}
layer {
  name: "mbox_loc"
  type: "Concat"
  bottom: "conv4_3_norm_mbox_loc_flat"
  bottom: "fc7_mbox_loc_flat"
  bottom: "conv6_2_mbox_loc_flat"
  bottom: "conv7_2_mbox_loc_flat"
  bottom: "conv8_2_mbox_loc_flat"
  bottom: "conv9_2_mbox_loc_flat"
  top: "mbox_loc"
  concat_param {
    axis: 1
  }
}
layer {
  name: "mbox_conf"
  type: "Concat"
  bottom: "conv4_3_norm_mbox_conf_flat"
  bottom: "fc7_mbox_conf_flat"
  bottom: "conv6_2_mbox_conf_flat"
  bottom: "conv7_2_mbox_conf_flat"
  bottom: "conv8_2_mbox_conf_flat"
  bottom: "conv9_2_mbox_conf_flat"
  top: "mbox_conf"
  concat_param {
    axis: 1
  }
}
layer {
  name: "mbox_priorbox"
  type: "Concat"
  bottom: "conv4_3_norm_mbox_priorbox"
  bottom: "fc7_mbox_priorbox"
  bottom: "conv6_2_mbox_priorbox"
  bottom: "conv7_2_mbox_priorbox"
  bottom: "conv8_2_mbox_priorbox"
  bottom: "conv9_2_mbox_priorbox"
  top: "mbox_priorbox"
  concat_param {
    axis: 2
  }
}

layer {
  name: "mbox_loss"
  type: "MultiBoxLoss"
  bottom: "mbox_loc"
  bottom: "mbox_conf"
  bottom: "mbox_priorbox"
  bottom: "label"
  top: "mbox_loss"
  include {
    phase: TRAIN
  }
  propagate_down: true
  propagate_down: true
  propagate_down: false
  propagate_down: false
  loss_param {
    normalization: VALID
  }
  multibox_loss_param {
    loc_loss_type: SMOOTH_L1
    conf_loss_type: SOFTMAX
    loc_weight: 1.0
    num_classes: 2 # 21
    share_location: true
    match_type: PER_PREDICTION
    overlap_threshold: 0.5
    use_prior_for_matching: true
    background_label_id: 0
    use_difficult_gt: true
    neg_pos_ratio: 3.0
    neg_overlap: 0.5
    code_type: CENTER_SIZE
    ignore_cross_boundary_bbox: false
    mining_type: MAX_NEGATIVE
  }
}