Normal Bayes Classifier ======================= .. highlight:: cpp This is a simple classification model assuming that feature vectors from each class are normally distributed (though, not necessarily independently distributed), so the whole data distribution function is assumed to be a Gaussian mixture, one component per class. Using the training data the algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for prediction. **[Fukunaga90] K. Fukunaga. Introduction to Statistical Pattern Recognition. second ed., New York: Academic Press, 1990.** .. index:: CvNormalBayesClassifier CvNormalBayesClassifier ----------------------- .. c:type:: CvNormalBayesClassifier Bayes classifier for normally distributed data. :: class CvNormalBayesClassifier : public CvStatModel { public: CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx=0, const CvMat* _sample_idx=0 ); virtual bool train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx = 0, const CvMat* _sample_idx=0, bool update=false ); virtual float predict( const CvMat* _samples, CvMat* results=0 ) const; virtual void clear(); virtual void save( const char* filename, const char* name=0 ); virtual void load( const char* filename, const char* name=0 ); virtual void write( CvFileStorage* storage, const char* name ); virtual void read( CvFileStorage* storage, CvFileNode* node ); protected: ... }; .. index:: CvNormalBayesClassifier::train .. _CvNormalBayesClassifier::train: CvNormalBayesClassifier::train ------------------------------ .. c:function:: bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx =0, const CvMat* _sample_idx=0, bool update=false ) Trains the model. The method trains the Normal Bayes classifier. It follows the conventions of the generic ``train`` "method" with the following limitations: only CV_ROW_SAMPLE data layout is supported; the input variables are all ordered; the output variable is categorical (i.e. elements of ``_responses`` must be integer numbers, though the vector may have ``CV_32FC1`` type), and missing measurements are not supported. In addition, there is an ``update`` flag that identifies whether the model should be trained from scratch ( ``update=false`` ) or should be updated using the new training data ( ``update=true`` ). .. index:: CvNormalBayesClassifier::predict .. _CvNormalBayesClassifier::predict: CvNormalBayesClassifier::predict -------------------------------- .. c:function:: float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results=0 ) const Predicts the response for sample(s) The method ``predict`` estimates the most probable classes for the input vectors. The input vectors (one or more) are stored as rows of the matrix ``samples`` . In the case of multiple input vectors, there should be one output vector ``results`` . The predicted class for a single input vector is returned by the method.