// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "precomp.hpp" #include "opencv2/core.hpp" #ifdef HAVE_OPENCV_DNN #include "opencv2/dnn.hpp" #endif #include namespace cv { #ifdef HAVE_OPENCV_DNN class FaceRecognizerSFImpl : public FaceRecognizerSF { public: FaceRecognizerSFImpl(const String& model, const String& config, int backend_id, int target_id) { net = dnn::readNet(model, config); CV_Assert(!net.empty()); net.setPreferableBackend(backend_id); net.setPreferableTarget(target_id); }; void alignCrop(InputArray _src_img, InputArray _face_mat, OutputArray _aligned_img) const override { Mat face_mat = _face_mat.getMat(); float src_point[5][2]; for (int row = 0; row < 5; ++row) { for(int col = 0; col < 2; ++col) { src_point[row][col] = face_mat.at(0, row*2+col+4); } } Mat warp_mat = getSimilarityTransformMatrix(src_point); warpAffine(_src_img, _aligned_img, warp_mat, Size(112, 112), INTER_LINEAR); }; void feature(InputArray _aligned_img, OutputArray _face_feature) override { Mat inputBolb = dnn::blobFromImage(_aligned_img, 1, Size(112, 112), Scalar(0, 0, 0), true, false); net.setInput(inputBolb); net.forward(_face_feature); }; double match(InputArray _face_feature1, InputArray _face_feature2, int dis_type) const override { Mat face_feature1 = _face_feature1.getMat(), face_feature2 = _face_feature2.getMat(); normalize(face_feature1, face_feature1); normalize(face_feature2, face_feature2); if(dis_type == DisType::FR_COSINE){ return sum(face_feature1.mul(face_feature2))[0]; }else if(dis_type == DisType::FR_NORM_L2){ return norm(face_feature1, face_feature2); }else{ throw std::invalid_argument("invalid parameter " + std::to_string(dis_type)); } }; private: Mat getSimilarityTransformMatrix(float src[5][2]) const { float dst[5][2] = { {38.2946f, 51.6963f}, {73.5318f, 51.5014f}, {56.0252f, 71.7366f}, {41.5493f, 92.3655f}, {70.7299f, 92.2041f} }; float avg0 = (src[0][0] + src[1][0] + src[2][0] + src[3][0] + src[4][0]) / 5; float avg1 = (src[0][1] + src[1][1] + src[2][1] + src[3][1] + src[4][1]) / 5; //Compute mean of src and dst. float src_mean[2] = { avg0, avg1 }; float dst_mean[2] = { 56.0262f, 71.9008f }; //Subtract mean from src and dst. float src_demean[5][2]; for (int i = 0; i < 2; i++) { for (int j = 0; j < 5; j++) { src_demean[j][i] = src[j][i] - src_mean[i]; } } float dst_demean[5][2]; for (int i = 0; i < 2; i++) { for (int j = 0; j < 5; j++) { dst_demean[j][i] = dst[j][i] - dst_mean[i]; } } double A00 = 0.0, A01 = 0.0, A10 = 0.0, A11 = 0.0; for (int i = 0; i < 5; i++) A00 += dst_demean[i][0] * src_demean[i][0]; A00 = A00 / 5; for (int i = 0; i < 5; i++) A01 += dst_demean[i][0] * src_demean[i][1]; A01 = A01 / 5; for (int i = 0; i < 5; i++) A10 += dst_demean[i][1] * src_demean[i][0]; A10 = A10 / 5; for (int i = 0; i < 5; i++) A11 += dst_demean[i][1] * src_demean[i][1]; A11 = A11 / 5; Mat A = (Mat_(2, 2) << A00, A01, A10, A11); double d[2] = { 1.0, 1.0 }; double detA = A00 * A11 - A01 * A10; if (detA < 0) d[1] = -1; double T[3][3] = { {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0} }; Mat s, u, vt, v; SVD::compute(A, s, u, vt); double smax = s.ptr(0)[0]>s.ptr(1)[0] ? s.ptr(0)[0] : s.ptr(1)[0]; double tol = smax * 2 * FLT_MIN; int rank = 0; if (s.ptr(0)[0]>tol) rank += 1; if (s.ptr(1)[0]>tol) rank += 1; double arr_u[2][2] = { {u.ptr(0)[0], u.ptr(0)[1]}, {u.ptr(1)[0], u.ptr(1)[1]} }; double arr_vt[2][2] = { {vt.ptr(0)[0], vt.ptr(0)[1]}, {vt.ptr(1)[0], vt.ptr(1)[1]} }; double det_u = arr_u[0][0] * arr_u[1][1] - arr_u[0][1] * arr_u[1][0]; double det_vt = arr_vt[0][0] * arr_vt[1][1] - arr_vt[0][1] * arr_vt[1][0]; if (rank == 1) { if ((det_u*det_vt) > 0) { Mat uvt = u*vt; T[0][0] = uvt.ptr(0)[0]; T[0][1] = uvt.ptr(0)[1]; T[1][0] = uvt.ptr(1)[0]; T[1][1] = uvt.ptr(1)[1]; } else { double temp = d[1]; d[1] = -1; Mat D = (Mat_(2, 2) << d[0], 0.0, 0.0, d[1]); Mat Dvt = D*vt; Mat uDvt = u*Dvt; T[0][0] = uDvt.ptr(0)[0]; T[0][1] = uDvt.ptr(0)[1]; T[1][0] = uDvt.ptr(1)[0]; T[1][1] = uDvt.ptr(1)[1]; d[1] = temp; } } else { Mat D = (Mat_(2, 2) << d[0], 0.0, 0.0, d[1]); Mat Dvt = D*vt; Mat uDvt = u*Dvt; T[0][0] = uDvt.ptr(0)[0]; T[0][1] = uDvt.ptr(0)[1]; T[1][0] = uDvt.ptr(1)[0]; T[1][1] = uDvt.ptr(1)[1]; } double var1 = 0.0; for (int i = 0; i < 5; i++) var1 += src_demean[i][0] * src_demean[i][0]; var1 = var1 / 5; double var2 = 0.0; for (int i = 0; i < 5; i++) var2 += src_demean[i][1] * src_demean[i][1]; var2 = var2 / 5; double scale = 1.0 / (var1 + var2)* (s.ptr(0)[0] * d[0] + s.ptr(1)[0] * d[1]); double TS[2]; TS[0] = T[0][0] * src_mean[0] + T[0][1] * src_mean[1]; TS[1] = T[1][0] * src_mean[0] + T[1][1] * src_mean[1]; T[0][2] = dst_mean[0] - scale*TS[0]; T[1][2] = dst_mean[1] - scale*TS[1]; T[0][0] *= scale; T[0][1] *= scale; T[1][0] *= scale; T[1][1] *= scale; Mat transform_mat = (Mat_(2, 3) << T[0][0], T[0][1], T[0][2], T[1][0], T[1][1], T[1][2]); return transform_mat; } private: dnn::Net net; }; #endif Ptr FaceRecognizerSF::create(const String& model, const String& config, int backend_id, int target_id) { #ifdef HAVE_OPENCV_DNN return makePtr(model, config, backend_id, target_id); #else CV_UNUSED(model); CV_UNUSED(config); CV_UNUSED(backend_id); CV_UNUSED(target_id); CV_Error(cv::Error::StsNotImplemented, "cv::FaceRecognizerSF requires enabled 'dnn' module"); #endif } } // namespace cv