// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include #include // EXPECT_MAT_NEAR namespace opencv_test { namespace { TEST(multiview_calibration, accuracy) { // convert euler angles to rotation matrix const auto euler2rot = [] (double x, double y, double z) { cv::Matx33d R_x(1, 0, 0, 0, cos(x), -sin(x), 0, sin(x), cos(x)); cv::Matx33d R_y(cos(y), 0, sin(y), 0, 1, 0, -sin(y), 0, cos(y)); cv::Matx33d R_z(cos(z), -sin(z), 0, sin(z), cos(z), 0, 0, 0, 1); return cv::Mat(R_z * R_y * R_x); }; const cv::Size board_size (5,4); cv::RNG rng(0); const double board_len = 0.08, noise_std = 0.04; const int num_cameras = 4, num_pts = board_size.area(); std::vector board_pattern (num_pts); // fill pattern points for (int j = 0; j < board_size.height; j++) { for (int i = 0; i < board_size.width; i++) { board_pattern[j*board_size.width+i] = cv::Vec3f ((float)i, (float)j, 0)*board_len; } } std::vector is_fisheye(num_cameras, false); std::vector image_sizes(num_cameras); std::vector Ks_gt, distortions_gt, Rs_gt, Ts_gt; for (int c = 0; c < num_cameras; c++) { // generate intrinsics and extrinsics image_sizes[c] = cv::Size(rng.uniform(1300, 1500), rng.uniform(900, 1300)); const double focal = rng.uniform(900.0, 1300.0); cv::Matx33d K(focal, 0, (double)image_sizes[c].width/2., 0, focal, (double)image_sizes[c].height/2., 0, 0, 1); cv::Matx dist (rng.uniform(1e-1, 3e-1), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2)); Ks_gt.emplace_back(cv::Mat(K)); distortions_gt.emplace_back(cv::Mat(dist)); if (c == 0) { // I | 0 Rs_gt.emplace_back(cv::Mat(cv::Matx33d::eye())); Ts_gt.emplace_back(cv::Mat(cv::Vec3d::zeros())); } else { const double ty_min = -.3, ty_max = .3, tx_min = -.3, tx_max = .3, tz_min = -.1, tz_max = .1; const double yaw_min = -20, yaw_max = 20, pitch_min = -20, pitch_max = 20, roll_min = -20, roll_max = 20; Rs_gt.emplace_back(euler2rot(rng.uniform(yaw_min, yaw_max)*M_PI/180, rng.uniform(pitch_min, pitch_max)*M_PI/180, rng.uniform(roll_min, roll_max)*M_PI/180)); Ts_gt.emplace_back(cv::Mat(cv::Vec3d(rng.uniform(tx_min, tx_max), rng.uniform(ty_min, ty_max), rng.uniform(tz_min, tz_max)))); } } const int MAX_SAMPLES = 2000, MAX_FRAMES = 50; cv::Mat pattern (board_pattern, true/*copy*/); pattern = pattern.reshape(1).t(); pattern.row(2) = 2.0; // set approximate depth of object points const double ty_min = -2, ty_max = 2, tx_min = -2, tx_max = 2, tz_min = -1, tz_max = 1; const double yaw_min = -45, yaw_max = 45, pitch_min = -45, pitch_max = 45, roll_min = -45, roll_max = 45; std::vector> objPoints; std::vector> image_points_all(num_cameras); cv::Mat ones = cv::Mat_::ones(1, num_pts); std::vector> visibility; cv::Mat centroid = cv::Mat(cv::Matx31f( (float)cv::mean(pattern.row(0)).val[0], (float)cv::mean(pattern.row(1)).val[0], (float)cv::mean(pattern.row(2)).val[0])); for (int f = 0; f < MAX_SAMPLES; f++) { cv::Mat R = euler2rot(rng.uniform(yaw_min, yaw_max)*M_PI/180, rng.uniform(pitch_min, pitch_max)*M_PI/180, rng.uniform(roll_min, roll_max)*M_PI/180); cv::Mat t = cv::Mat(cv::Matx31f( (float)rng.uniform(tx_min, tx_max), (float)rng.uniform(ty_min, ty_max), (float)rng.uniform(tz_min, tz_max))); R.convertTo(R, CV_32F); cv::Mat pattern_new = (R * (pattern - centroid * ones) + centroid * ones + t * ones).t(); std::vector img_pts_cams(num_cameras); std::vector visible(num_cameras, false); int num_visible_patterns = 0; for (int c = 0; c < num_cameras; c++) { cv::Mat img_pts; if (is_fisheye[c]) { cv::fisheye::projectPoints(pattern_new, img_pts, Rs_gt[c], Ts_gt[c], Ks_gt[c], distortions_gt[c]); } else { cv::projectPoints(pattern_new, Rs_gt[c], Ts_gt[c], Ks_gt[c], distortions_gt[c], img_pts); } // add normal / Gaussian noise to image points cv::Mat noise (img_pts.rows, img_pts.cols, img_pts.type()); rng.fill(noise, cv::RNG::NORMAL, 0, noise_std); img_pts += noise; bool are_all_pts_in_image = true; const auto * const pts = (float *) img_pts.data; for (int i = 0; i < num_pts; i++) { if (pts[i*2 ] < 0 || pts[i*2 ] > (float)image_sizes[c].width || pts[i*2+1] < 0 || pts[i*2+1] > (float)image_sizes[c].height) { are_all_pts_in_image = false; break; } } if (are_all_pts_in_image) { visible[c] = true; num_visible_patterns += 1; img_pts.copyTo(img_pts_cams[c]); } } if (num_visible_patterns >= 2) { objPoints.emplace_back(board_pattern); visibility.emplace_back(visible); for (int c = 0; c < num_cameras; c++) { image_points_all[c].emplace_back(img_pts_cams[c].clone()); } if (objPoints.size() >= MAX_FRAMES) break; } } cv::Mat visibility_mat = cv::Mat_(num_cameras, (int)objPoints.size()); for (int c = 0; c < num_cameras; c++) { for (int f = 0; f < (int)objPoints.size(); f++) { visibility_mat.at(c, f) = visibility[f][c]; } } std::vector Ks, distortions, Rs, Ts; cv::Mat errors_mat, output_pairs, rvecs0, tvecs0; calibrateMultiview (objPoints, image_points_all, image_sizes, visibility_mat, Rs, Ts, Ks, distortions, rvecs0, tvecs0, is_fisheye, errors_mat, output_pairs, false); const double K_err_tol = 1e1, dist_tol = 5e-2, R_tol = 1e-2, T_tol = 1e-2; for (int c = 0; c < num_cameras; c++) { cv::Mat R; cv::Rodrigues(Rs[c], R); EXPECT_MAT_NEAR(Ks_gt[c], Ks[c], K_err_tol); CV_LOG_INFO(NULL, "true distortions: " << distortions_gt[c]); CV_LOG_INFO(NULL, "found distortions: " << distortions[c]); EXPECT_MAT_NEAR(distortions_gt[c], distortions[c], dist_tol); EXPECT_MAT_NEAR(Rs_gt[c], R, R_tol); EXPECT_MAT_NEAR(Ts_gt[c], Ts[c], T_tol); } } }}