/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { class CV_ImgWarpBaseTest : public cvtest::ArrayTest { public: CV_ImgWarpBaseTest( bool warp_matrix ); protected: int read_params( const cv::FileStorage& fs ); int prepare_test_case( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); int interpolation; int max_interpolation; double spatial_scale_zoom, spatial_scale_decimate; }; CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix ) { test_array[INPUT].push_back(NULL); if( warp_matrix ) test_array[INPUT].push_back(NULL); test_array[INPUT_OUTPUT].push_back(NULL); test_array[REF_INPUT_OUTPUT].push_back(NULL); max_interpolation = 5; interpolation = 0; element_wise_relative_error = false; spatial_scale_zoom = 0.01; spatial_scale_decimate = 0.005; } int CV_ImgWarpBaseTest::read_params( const cv::FileStorage& fs ) { int code = cvtest::ArrayTest::read_params( fs ); return code; } void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) { cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); if( CV_MAT_DEPTH(type) == CV_32F ) { low = Scalar::all(-10.); high = Scalar::all(10); } } void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); int depth = cvtest::randInt(rng) % 3; int cn = cvtest::randInt(rng) % 3 + 1; cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F; cn += cn == 2; types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn); if( test_array[INPUT].size() > 1 ) types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1; interpolation = cvtest::randInt(rng) % max_interpolation; } void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT || j != 0 ) cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); } int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx ) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); Mat& img = test_mat[INPUT][0]; int i, j, cols = img.cols; int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); double scale = depth == CV_16U ? 1000. : 255.*0.5; double space_scale = spatial_scale_decimate; vector buffer(img.cols*cn); if( code <= 0 ) return code; if( test_mat[INPUT_OUTPUT][0].cols >= img.cols && test_mat[INPUT_OUTPUT][0].rows >= img.rows ) space_scale = spatial_scale_zoom; for( i = 0; i < img.rows; i++ ) { uchar* ptr = img.ptr(i); switch( cn ) { case 1: for( j = 0; j < cols; j++ ) buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale); break; case 2: for( j = 0; j < cols; j++ ) { buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale); buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale); } break; case 3: for( j = 0; j < cols; j++ ) { buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale); buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale); buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale); } break; case 4: for( j = 0; j < cols; j++ ) { buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale); buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale); buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale); buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale); } break; default: CV_Assert(0); } /*switch( depth ) { case CV_8U: for( j = 0; j < cols*cn; j++ ) ptr[j] = (uchar)cvRound(buffer[j]); break; case CV_16U: for( j = 0; j < cols*cn; j++ ) ((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]); break; case CV_32F: for( j = 0; j < cols*cn; j++ ) ((float*)ptr)[j] = (float)buffer[j]; break; default: CV_Assert(0); }*/ cv::Mat src(1, cols*cn, CV_32F, &buffer[0]); cv::Mat dst(1, cols*cn, depth, ptr); src.convertTo(dst, dst.type()); } return code; } ///////////////////////// static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy, Mat* mask=0, int interpolation=cv::INTER_LINEAR ) { int x, y, k; int drows = dst.rows, dcols = dst.cols; int srows = src.rows, scols = src.cols; const uchar* sptr0 = src.ptr(); int depth = src.depth(), cn = src.channels(); int elem_size = (int)src.elemSize(); int step = (int)(src.step / CV_ELEM_SIZE(depth)); int delta; if( interpolation != cv::INTER_CUBIC ) { delta = 0; scols -= 1; srows -= 1; } else { delta = 1; scols = MAX(scols - 3, 0); srows = MAX(srows - 3, 0); } int scols1 = MAX(scols - 2, 0); int srows1 = MAX(srows - 2, 0); if( mask ) *mask = Scalar::all(0); for( y = 0; y < drows; y++ ) { uchar* dptr = dst.ptr(y); const float* mx = mapx.ptr(y); const float* my = mapy.ptr(y); uchar* m = mask ? mask->ptr(y) : 0; for( x = 0; x < dcols; x++, dptr += elem_size ) { float xs = mx[x]; float ys = my[x]; int ixs = cvFloor(xs); int iys = cvFloor(ys); if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 || (unsigned)(iys - delta - 1) >= (unsigned)srows1 ) { if( m ) m[x] = 1; if( (unsigned)(ixs - delta) >= (unsigned)scols || (unsigned)(iys - delta) >= (unsigned)srows ) continue; } xs -= ixs; ys -= iys; switch( depth ) { case CV_8U: { const uchar* sptr = sptr0 + iys*step + ixs*cn; for( k = 0; k < cn; k++ ) { float v00 = sptr[k]; float v01 = sptr[cn + k]; float v10 = sptr[step + k]; float v11 = sptr[step + cn + k]; v00 = v00 + xs*(v01 - v00); v10 = v10 + xs*(v11 - v10); v00 = v00 + ys*(v10 - v00); dptr[k] = (uchar)cvRound(v00); } } break; case CV_16U: { const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn; for( k = 0; k < cn; k++ ) { float v00 = sptr[k]; float v01 = sptr[cn + k]; float v10 = sptr[step + k]; float v11 = sptr[step + cn + k]; v00 = v00 + xs*(v01 - v00); v10 = v10 + xs*(v11 - v10); v00 = v00 + ys*(v10 - v00); ((ushort*)dptr)[k] = (ushort)cvRound(v00); } } break; case CV_32F: { const float* sptr = (const float*)sptr0 + iys*step + ixs*cn; for( k = 0; k < cn; k++ ) { float v00 = sptr[k]; float v01 = sptr[cn + k]; float v10 = sptr[step + k]; float v11 = sptr[step + cn + k]; v00 = v00 + xs*(v01 - v00); v10 = v10 + xs*(v11 - v10); v00 = v00 + ys*(v10 - v00); ((float*)dptr)[k] = (float)v00; } } break; default: CV_Assert(0); } } } } ///////////////////////// class CV_RemapTest : public CV_ImgWarpBaseTest { public: CV_RemapTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void run_func(); int prepare_test_case( int test_case_idx ); void prepare_to_validation( int /*test_case_idx*/ ); double get_success_error_level( int test_case_idx, int i, int j ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); }; CV_RemapTest::CV_RemapTest() : CV_ImgWarpBaseTest( false ) { //spatial_scale_zoom = spatial_scale_decimate; test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); spatial_scale_decimate = spatial_scale_zoom; } void CV_RemapTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); types[INPUT][1] = types[INPUT][2] = CV_32FC1; interpolation = cv::INTER_LINEAR; } void CV_RemapTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT ) CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr ); } void CV_RemapTest::run_func() { remap( cvarrToMat( test_array[INPUT][0] ), cvarrToMat( test_array[INPUT_OUTPUT][0] ), cvarrToMat( test_array[INPUT][1] ), cvarrToMat( test_array[INPUT][2] ), interpolation ); } double CV_RemapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { int depth = test_mat[INPUT][0].depth(); return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2; } int CV_RemapTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx ); const Mat& src = test_mat[INPUT][0]; double a[9] = {0,0,0,0,0,0,0,0,1}, k[4]; Mat _a( 3, 3, CV_64F, a ); Mat _k( 4, 1, CV_64F, k ); double sz = MAX(src.rows, src.cols); if( code <= 0 ) return code; double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); a[4] = aspect_ratio*a[0]; k[0] = cvtest::randReal(rng)*0.06 - 0.03; k[1] = cvtest::randReal(rng)*0.06 - 0.03; if( k[0]*k[1] > 0 ) k[1] = -k[1]; k[2] = cvtest::randReal(rng)*0.004 - 0.002; k[3] = cvtest::randReal(rng)*0.004 - 0.002; cvtest::initUndistortMap( _a, _k, Mat(), Mat(), test_mat[INPUT][1].size(), test_mat[INPUT][1], test_mat[INPUT][2], CV_32F ); return code; } void CV_RemapTest::prepare_to_validation( int /*test_case_idx*/ ) { Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; Mat& dst0 = test_mat[INPUT_OUTPUT][0]; Mat mask( dst.size(), CV_8U ); test_remap(test_mat[INPUT][0], dst, test_mat[INPUT][1], test_mat[INPUT][2], &mask, interpolation ); dst.setTo(Scalar::all(0), mask); dst0.setTo(Scalar::all(0), mask); } ////////////////////////////// GetRectSubPix ///////////////////////////////// static void test_getQuadrangeSubPix( const Mat& src, Mat& dst, double* a ) { int sstep = (int)(src.step / sizeof(float)); int scols = src.cols, srows = src.rows; CV_Assert( src.depth() == CV_32F && src.type() == dst.type() ); int cn = dst.channels(); for( int y = 0; y < dst.rows; y++ ) for( int x = 0; x < dst.cols; x++ ) { float* d = dst.ptr(y) + x*cn; float sx = (float)(a[0]*x + a[1]*y + a[2]); float sy = (float)(a[3]*x + a[4]*y + a[5]); int ix = cvFloor(sx), iy = cvFloor(sy); int dx = cn, dy = sstep; const float* s; sx -= ix; sy -= iy; if( (unsigned)ix >= (unsigned)(scols-1) ) ix = ix < 0 ? 0 : scols - 1, sx = 0, dx = 0; if( (unsigned)iy >= (unsigned)(srows-1) ) iy = iy < 0 ? 0 : srows - 1, sy = 0, dy = 0; s = src.ptr(iy) + ix*cn; for( int k = 0; k < cn; k++, s++ ) { float t0 = s[0] + sx*(s[dx] - s[0]); float t1 = s[dy] + sx*(s[dy + dx] - s[dy]); d[k] = t0 + sy*(t1 - t0); } } } class CV_GetRectSubPixTest : public CV_ImgWarpBaseTest { public: CV_GetRectSubPixTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void run_func(); int prepare_test_case( int test_case_idx ); void prepare_to_validation( int /*test_case_idx*/ ); double get_success_error_level( int test_case_idx, int i, int j ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); CvPoint2D32f center; bool test_cpp; }; CV_GetRectSubPixTest::CV_GetRectSubPixTest() : CV_ImgWarpBaseTest( false ) { //spatial_scale_zoom = spatial_scale_decimate; spatial_scale_decimate = spatial_scale_zoom; test_cpp = false; } void CV_GetRectSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int src_depth = cvtest::randInt(rng) % 2, dst_depth; int cn = cvtest::randInt(rng) % 2 ? 3 : 1; Size src_size, dst_size; dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F; if( src_depth < CV_32F && cvtest::randInt(rng) % 2 ) dst_depth = CV_32F; types[INPUT][0] = CV_MAKETYPE(src_depth,cn); types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn); src_size = sizes[INPUT][0]; dst_size.width = cvRound(sqrt(cvtest::randReal(rng)*src_size.width) + 1); dst_size.height = cvRound(sqrt(cvtest::randReal(rng)*src_size.height) + 1); dst_size.width = MIN(dst_size.width,src_size.width); dst_size.height = MIN(dst_size.width,src_size.height); sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dst_size; center.x = (float)(cvtest::randReal(rng)*src_size.width); center.y = (float)(cvtest::randReal(rng)*src_size.height); interpolation = cv::INTER_LINEAR; test_cpp = (cvtest::randInt(rng) & 256) == 0; } void CV_GetRectSubPixTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT ) CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr ); } void CV_GetRectSubPixTest::run_func() { cv::Mat _out = cv::cvarrToMat(test_array[INPUT_OUTPUT][0]); cv::getRectSubPix( cv::cvarrToMat(test_array[INPUT][0]), _out.size(), center, _out, _out.type()); } double CV_GetRectSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { int in_depth = test_mat[INPUT][0].depth(); int out_depth = test_mat[INPUT_OUTPUT][0].depth(); return in_depth >= CV_32F ? 1e-3 : out_depth >= CV_32F ? 1e-2 : 1; } int CV_GetRectSubPixTest::prepare_test_case( int test_case_idx ) { return CV_ImgWarpBaseTest::prepare_test_case( test_case_idx ); } void CV_GetRectSubPixTest::prepare_to_validation( int /*test_case_idx*/ ) { Mat& src0 = test_mat[INPUT][0]; Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0]; Mat src = src0, dst = dst0; int ftype = CV_MAKETYPE(CV_32F,src0.channels()); double a[] = { 1, 0, center.x - dst.cols*0.5 + 0.5, 0, 1, center.y - dst.rows*0.5 + 0.5 }; if( src.depth() != CV_32F ) src0.convertTo(src, CV_32F); if( dst.depth() != CV_32F ) dst.create(dst0.size(), ftype); test_getQuadrangeSubPix( src, dst, a ); if( dst.data != dst0.data ) dst.convertTo(dst0, dst0.depth()); } ////////////////////////////// resizeArea ///////////////////////////////// template static void check_resize_area(const Mat& expected, const Mat& actual, double tolerance = 1.0) { ASSERT_EQ(actual.type(), expected.type()); ASSERT_EQ(actual.size(), expected.size()); Mat diff; absdiff(actual, expected, diff); Mat one_channel_diff = diff; //.reshape(1); Size dsize = actual.size(); bool next = true; for (int dy = 0; dy < dsize.height && next; ++dy) { const T* eD = expected.ptr(dy); const T* aD = actual.ptr(dy); for (int dx = 0; dx < dsize.width && next; ++dx) if (fabs(static_cast(aD[dx] - eD[dx])) > tolerance) { cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast(cvtest::norm(actual, expected, NORM_INF))); cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy); const int radius = 3; int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height); int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width); std::cout << "Abs diff:" << std::endl << diff << std::endl; std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl; std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl; next = false; } } ASSERT_EQ(0, cvtest::norm(one_channel_diff, cv::NORM_INF)); } /////////////////////////////////////////////////////////////////////////// TEST(Imgproc_fitLine_vector_3d, regression) { std::vector points_vector; Point3f p21(4,4,4); Point3f p22(8,8,8); points_vector.push_back(p21); points_vector.push_back(p22); std::vector line; cv::fitLine(points_vector, line, DIST_L2, 0 ,0 ,0); ASSERT_EQ(line.size(), (size_t)6); } TEST(Imgproc_fitLine_vector_2d, regression) { std::vector points_vector; Point2f p21(4,4); Point2f p22(8,8); Point2f p23(16,16); points_vector.push_back(p21); points_vector.push_back(p22); points_vector.push_back(p23); std::vector line; cv::fitLine(points_vector, line, DIST_L2, 0 ,0 ,0); ASSERT_EQ(line.size(), (size_t)4); } TEST(Imgproc_fitLine_Mat_2dC2, regression) { cv::Mat mat1 = Mat::zeros(3, 1, CV_32SC2); std::vector line1; cv::fitLine(mat1, line1, DIST_L2, 0 ,0 ,0); ASSERT_EQ(line1.size(), (size_t)4); } TEST(Imgproc_fitLine_Mat_2dC1, regression) { cv::Matx mat2; std::vector line2; cv::fitLine(mat2, line2, DIST_L2, 0 ,0 ,0); ASSERT_EQ(line2.size(), (size_t)4); } TEST(Imgproc_fitLine_Mat_3dC3, regression) { cv::Mat mat1 = Mat::zeros(2, 1, CV_32SC3); std::vector line1; cv::fitLine(mat1, line1, DIST_L2, 0 ,0 ,0); ASSERT_EQ(line1.size(), (size_t)6); } TEST(Imgproc_fitLine_Mat_3dC1, regression) { cv::Mat mat2 = Mat::zeros(2, 3, CV_32SC1); std::vector line2; cv::fitLine(mat2, line2, DIST_L2, 0 ,0 ,0); ASSERT_EQ(line2.size(), (size_t)6); } TEST(Imgproc_resize_area, regression) { static ushort input_data[16 * 16] = { 90, 94, 80, 3, 231, 2, 186, 245, 188, 165, 10, 19, 201, 169, 8, 228, 86, 5, 203, 120, 136, 185, 24, 94, 81, 150, 163, 137, 88, 105, 132, 132, 236, 48, 250, 218, 19, 52, 54, 221, 159, 112, 45, 11, 152, 153, 112, 134, 78, 133, 136, 83, 65, 76, 82, 250, 9, 235, 148, 26, 236, 179, 200, 50, 99, 51, 103, 142, 201, 65, 176, 33, 49, 226, 177, 109, 46, 21, 67, 130, 54, 125, 107, 154, 145, 51, 199, 189, 161, 142, 231, 240, 139, 162, 240, 22, 231, 86, 79, 106, 92, 47, 146, 156, 36, 207, 71, 33, 2, 244, 221, 71, 44, 127, 71, 177, 75, 126, 68, 119, 200, 129, 191, 251, 6, 236, 247, 6, 133, 175, 56, 239, 147, 221, 243, 154, 242, 82, 106, 99, 77, 158, 60, 229, 2, 42, 24, 174, 27, 198, 14, 204, 246, 251, 141, 31, 114, 163, 29, 147, 121, 53, 74, 31, 147, 189, 42, 98, 202, 17, 228, 123, 209, 40, 77, 49, 112, 203, 30, 12, 205, 25, 19, 106, 145, 185, 163, 201, 237, 223, 247, 38, 33, 105, 243, 117, 92, 179, 204, 248, 160, 90, 73, 126, 2, 41, 213, 204, 6, 124, 195, 201, 230, 187, 210, 167, 48, 79, 123, 159, 145, 218, 105, 209, 240, 152, 136, 235, 235, 164, 157, 9, 152, 38, 27, 209, 120, 77, 238, 196, 240, 233, 10, 241, 90, 67, 12, 79, 0, 43, 58, 27, 83, 199, 190, 182}; static ushort expected_data[5 * 5] = { 120, 100, 151, 101, 130, 106, 115, 141, 130, 127, 91, 136, 170, 114, 140, 104, 122, 131, 147, 133, 161, 163, 70, 107, 182 }; cv::Mat src(16, 16, CV_16UC1, input_data); cv::Mat expected(5, 5, CV_16UC1, expected_data); cv::Mat actual(expected.size(), expected.type()); cv::resize(src, actual, cv::Size(), 0.3, 0.3, INTER_AREA); check_resize_area(expected, actual, 1.0); } TEST(Imgproc_resize_area, regression_half_round) { static uchar input_data[32 * 32]; for(int i = 0; i < 32 * 32; ++i) input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32)); static uchar expected_data[16 * 16]; for(int i = 0; i < 16 * 16; ++i) expected_data[i] = (uchar)(254 + i / (16 * 8)); cv::Mat src(32, 32, CV_8UC1, input_data); cv::Mat expected(16, 16, CV_8UC1, expected_data); cv::Mat actual(expected.size(), expected.type()); cv::resize(src, actual, cv::Size(), 0.5, 0.5, INTER_AREA); check_resize_area(expected, actual, 0.5); } TEST(Imgproc_resize_area, regression_quarter_round) { static uchar input_data[32 * 32]; for(int i = 0; i < 32 * 32; ++i) input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32)); static uchar expected_data[8 * 8]; for(int i = 0; i < 8 * 8; ++i) expected_data[i] = 254; cv::Mat src(32, 32, CV_8UC1, input_data); cv::Mat expected(8, 8, CV_8UC1, expected_data); cv::Mat actual(expected.size(), expected.type()); cv::resize(src, actual, cv::Size(), 0.25, 0.25, INTER_AREA); check_resize_area(expected, actual, 0.5); } ////////////////////////////////////////////////////////////////////////// TEST(Imgproc_Remap, accuracy) { CV_RemapTest test; test.safe_run(); } TEST(Imgproc_GetRectSubPix, accuracy) { CV_GetRectSubPixTest test; test.safe_run(); } ////////////////////////////////////////////////////////////////////////// template struct IntCast { T operator() (WT val) const { return cv::saturate_cast(val >> 2); } }; template struct FltCast { T operator() (WT val) const { return cv::saturate_cast(val * 0.25); } }; template void resizeArea(const cv::Mat & src, cv::Mat & dst) { int cn = src.channels(); CastOp castOp; for (int y = 0; y < dst.rows; ++y) { const T * sptr0 = src.ptr(y << 1); const T * sptr1 = src.ptr((y << 1) + 1); T * dptr = dst.ptr(y); for (int x = 0; x < dst.cols * cn; x += cn) { int x1 = x << 1; for (int c = 0; c < cn; ++c) { WT sum = WT(sptr0[x1 + c]) + WT(sptr0[x1 + c + cn]); sum += WT(sptr1[x1 + c]) + WT(sptr1[x1 + c + cn]) + (WT)(one); dptr[x + c] = castOp(sum); } } } } TEST(Resize, Area_half) { const int size = 1000; int types[] = { CV_8UC1, CV_8UC4, CV_16UC1, CV_16UC4, CV_16SC1, CV_16SC3, CV_16SC4, CV_32FC1, CV_32FC4 }; cv::RNG rng(17); for (int i = 0, _size = sizeof(types) / sizeof(types[0]); i < _size; ++i) { int type = types[i], depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); const float eps = depth <= CV_32S ? 0 : 7e-5f; SCOPED_TRACE(depth); SCOPED_TRACE(cn); cv::Mat src(size, size, type), dst_actual(size >> 1, size >> 1, type), dst_reference(size >> 1, size >> 1, type); rng.fill(src, cv::RNG::UNIFORM, -1000, 1000, true); if (depth == CV_8U) resizeArea >(src, dst_reference); else if (depth == CV_16U) resizeArea >(src, dst_reference); else if (depth == CV_16S) resizeArea >(src, dst_reference); else if (depth == CV_32F) resizeArea >(src, dst_reference); else CV_Assert(0); cv::resize(src, dst_actual, dst_actual.size(), 0, 0, cv::INTER_AREA); ASSERT_GE(eps, cvtest::norm(dst_reference, dst_actual, cv::NORM_INF)); } } TEST(Resize, lanczos4_regression_16192) { Size src_size(11, 17); Size dst_size(11, 153); Mat src(src_size, CV_8UC3, Scalar::all(128)); Mat dst(dst_size, CV_8UC3, Scalar::all(255)); cv::resize(src, dst, dst_size, 0, 0, INTER_LANCZOS4); Mat expected(dst_size, CV_8UC3, Scalar::all(128)); EXPECT_EQ(cvtest::norm(dst, expected, NORM_INF), 0) << dst(Rect(0,0,8,8)); } TEST(Resize, nearest_regression_15075) { const int C = 5; const int i1 = 5, j1 = 5; Size src_size(12, 12); Size dst_size(11, 11); cv::Mat src = cv::Mat::zeros(src_size, CV_8UC(C)), dst; for (int j = 0; j < C; j++) src.col(i1).row(j1).data[j] = 1; cv::resize(src, dst, dst_size, 0, 0, INTER_NEAREST); EXPECT_EQ(C, cvtest::norm(dst, NORM_L1)) << src.size; } TEST(Imgproc_Warp, multichannel) { static const int inter_types[] = {INTER_NEAREST, INTER_AREA, INTER_CUBIC, INTER_LANCZOS4, INTER_LINEAR}; static const int inter_n = sizeof(inter_types) / sizeof(int); static const int border_types[] = {BORDER_CONSTANT, BORDER_DEFAULT, BORDER_REFLECT, BORDER_REPLICATE, BORDER_WRAP, BORDER_WRAP}; static const int border_n = sizeof(border_types) / sizeof(int); RNG& rng = theRNG(); for( int iter = 0; iter < 100; iter++ ) { int inter = inter_types[rng.uniform(0, inter_n)]; int border = border_types[rng.uniform(0, border_n)]; int width = rng.uniform(3, 333); int height = rng.uniform(3, 333); int cn = rng.uniform(1, 15); if(inter == INTER_CUBIC || inter == INTER_LANCZOS4) cn = rng.uniform(1, 5); Mat src(height, width, CV_8UC(cn)), dst; //randu(src, 0, 256); src.setTo(0.); Mat rot = getRotationMatrix2D(Point2f(0.f, 0.f), 1.0, 1.0); warpAffine(src, dst, rot, src.size(), inter, border); ASSERT_EQ(0.0, cvtest::norm(dst, NORM_INF)); Mat rot2 = Mat::eye(3, 3, rot.type()); rot.copyTo(rot2.rowRange(0, 2)); warpPerspective(src, dst, rot2, src.size(), inter, border); ASSERT_EQ(0.0, cvtest::norm(dst, NORM_INF)); } } TEST(Imgproc_Warp, regression_19566) // valgrind should detect problem if any { const Size imgSize(8192, 8); Mat inMat = Mat::zeros(imgSize, CV_8UC4); Mat outMat = Mat::zeros(imgSize, CV_8UC4); warpAffine( inMat, outMat, getRotationMatrix2D(Point2f(imgSize.width / 2.0f, imgSize.height / 2.0f), 45.0, 1.0), imgSize, INTER_LINEAR, cv::BORDER_CONSTANT, cv::Scalar(0.0, 0.0, 0.0, 255.0) ); } TEST(Imgproc_GetAffineTransform, singularity) { Point2f A_sample[3]; A_sample[0] = Point2f(8.f, 9.f); A_sample[1] = Point2f(40.f, 41.f); A_sample[2] = Point2f(47.f, 48.f); Point2f B_sample[3]; B_sample[0] = Point2f(7.37465f, 11.8295f); B_sample[1] = Point2f(15.0113f, 12.8994f); B_sample[2] = Point2f(38.9943f, 9.56297f); Mat trans = getAffineTransform(A_sample, B_sample); ASSERT_EQ(0.0, cvtest::norm(trans, NORM_INF)); } TEST(Imgproc_Remap, DISABLED_memleak) { Mat src; const int N = 400; src.create(N, N, CV_8U); randu(src, 0, 256); Mat map_x, map_y, dst; dst.create( src.size(), src.type() ); map_x.create( src.size(), CV_32FC1 ); map_y.create( src.size(), CV_32FC1 ); randu(map_x, 0., N+0.); randu(map_y, 0., N+0.); for( int iter = 0; iter < 10000; iter++ ) { if(iter % 100 == 0) { putchar('.'); fflush(stdout); } remap(src, dst, map_x, map_y, INTER_LINEAR); } } //** @deprecated */ TEST(Imgproc_linearPolar, identity) { const int N = 33; Mat in(N, N, CV_8UC3, Scalar(255, 0, 0)); in(cv::Rect(N/3, N/3, N/3, N/3)).setTo(Scalar::all(255)); cv::blur(in, in, Size(5, 5)); cv::blur(in, in, Size(5, 5)); Mat src = in.clone(); Mat dst; Rect roi = Rect(0, 0, in.cols - ((N+19)/20), in.rows); for (int i = 1; i <= 5; i++) { linearPolar(src, dst, Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f, cv::WARP_FILL_OUTLIERS | cv::INTER_LINEAR | cv::WARP_INVERSE_MAP); linearPolar(dst, src, Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f, cv::WARP_FILL_OUTLIERS | cv::INTER_LINEAR); double psnr = cvtest::PSNR(in(roi), src(roi)); EXPECT_LE(25, psnr) << "iteration=" << i; } #if 0 Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255)); in.copyTo(all(Rect(0,0,N,N))); src.copyTo(all(Rect(0,N+1,N,N))); src.copyTo(all(Rect(N+1,0,N,N))); dst.copyTo(all(Rect(N+1,N+1,N,N))); imwrite("linearPolar.png", all); imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all); cv::waitKey(); #endif } //** @deprecated */ TEST(Imgproc_logPolar, identity) { const int N = 33; Mat in(N, N, CV_8UC3, Scalar(255, 0, 0)); in(cv::Rect(N/3, N/3, N/3, N/3)).setTo(Scalar::all(255)); cv::blur(in, in, Size(5, 5)); cv::blur(in, in, Size(5, 5)); Mat src = in.clone(); Mat dst; Rect roi = Rect(0, 0, in.cols - ((N+19)/20), in.rows); double M = N/log(N * 0.5f); for (int i = 1; i <= 5; i++) { logPolar(src, dst, Point2f((N-1) * 0.5f, (N-1) * 0.5f), M, WARP_FILL_OUTLIERS | INTER_LINEAR | WARP_INVERSE_MAP); logPolar(dst, src, Point2f((N-1) * 0.5f, (N-1) * 0.5f), M, WARP_FILL_OUTLIERS | INTER_LINEAR); double psnr = cvtest::PSNR(in(roi), src(roi)); EXPECT_LE(25, psnr) << "iteration=" << i; } #if 0 Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255)); in.copyTo(all(Rect(0,0,N,N))); src.copyTo(all(Rect(0,N+1,N,N))); src.copyTo(all(Rect(N+1,0,N,N))); dst.copyTo(all(Rect(N+1,N+1,N,N))); imwrite("logPolar.png", all); imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all); cv::waitKey(); #endif } TEST(Imgproc_warpPolar, identity) { const int N = 33; Mat in(N, N, CV_8UC3, Scalar(255, 0, 0)); in(cv::Rect(N / 3, N / 3, N / 3, N / 3)).setTo(Scalar::all(255)); cv::blur(in, in, Size(5, 5)); cv::blur(in, in, Size(5, 5)); Mat src = in.clone(); Mat dst; Rect roi = Rect(0, 0, in.cols - ((N + 19) / 20), in.rows); Point2f center = Point2f((N - 1) * 0.5f, (N - 1) * 0.5f); double radius = N * 0.5; int flags = WARP_FILL_OUTLIERS | INTER_LINEAR; // test linearPolar for (int ki = 1; ki <= 5; ki++) { warpPolar(src, dst, src.size(), center, radius, flags + WARP_POLAR_LINEAR + WARP_INVERSE_MAP); warpPolar(dst, src, src.size(), center, radius, flags + WARP_POLAR_LINEAR); double psnr = cv::PSNR(in(roi), src(roi)); EXPECT_LE(25, psnr) << "iteration=" << ki; } // test logPolar src = in.clone(); for (int ki = 1; ki <= 5; ki++) { warpPolar(src, dst, src.size(),center, radius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP ); warpPolar(dst, src, src.size(),center, radius, flags + WARP_POLAR_LOG); double psnr = cv::PSNR(in(roi), src(roi)); EXPECT_LE(25, psnr) << "iteration=" << ki; } #if 0 Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255)); in.copyTo(all(Rect(0,0,N,N))); src.copyTo(all(Rect(0,N+1,N,N))); src.copyTo(all(Rect(N+1,0,N,N))); dst.copyTo(all(Rect(N+1,N+1,N,N))); imwrite("linearPolar.png", all); imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all); cv::waitKey(); #endif } }} // namespace /* End of file. */