#!/usr/bin/env python ''' Digit recognition adjustment. Grid search is used to find the best parameters for SVM and KNearest classifiers. SVM adjustment follows the guidelines given in http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf Usage: digits_adjust.py [--model {svm|knearest}] --model {svm|knearest} - select the classifier (SVM is the default) ''' import numpy as np import cv2 from multiprocessing.pool import ThreadPool from digits import * def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): n = len(samples) folds = np.array_split(np.arange(n), kfold) def f(i): model = model_class(**params) test_idx = folds[i] train_idx = list(folds) train_idx.pop(i) train_idx = np.hstack(train_idx) train_samples, train_labels = samples[train_idx], labels[train_idx] test_samples, test_labels = samples[test_idx], labels[test_idx] model.train(train_samples, train_labels) resp = model.predict(test_samples) score = (resp != test_labels).mean() print ".", return score if pool is None: scores = map(f, xrange(kfold)) else: scores = pool.map(f, xrange(kfold)) return np.mean(scores) class App(object): def __init__(self): self._samples, self._labels = self.preprocess() def preprocess(self): digits, labels = load_digits(DIGITS_FN) shuffle = np.random.permutation(len(digits)) digits, labels = digits[shuffle], labels[shuffle] digits2 = map(deskew, digits) samples = preprocess_hog(digits2) return samples, labels def get_dataset(self): return self._samples, self._labels def run_jobs(self, f, jobs): pool = ThreadPool(processes=cv2.getNumberOfCPUs()) ires = pool.imap_unordered(f, jobs) return ires def adjust_SVM(self): Cs = np.logspace(0, 10, 15, base=2) gammas = np.logspace(-7, 4, 15, base=2) scores = np.zeros((len(Cs), len(gammas))) scores[:] = np.nan print 'adjusting SVM (may take a long time) ...' def f(job): i, j = job samples, labels = self.get_dataset() params = dict(C = Cs[i], gamma=gammas[j]) score = cross_validate(SVM, params, samples, labels) return i, j, score ires = self.run_jobs(f, np.ndindex(*scores.shape)) for count, (i, j, score) in enumerate(ires): scores[i, j] = score print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100) print scores print 'writing score table to "svm_scores.npz"' np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas) i, j = np.unravel_index(scores.argmin(), scores.shape) best_params = dict(C = Cs[i], gamma=gammas[j]) print 'best params:', best_params print 'best error: %.2f %%' % (scores.min()*100) return best_params def adjust_KNearest(self): print 'adjusting KNearest ...' def f(k): samples, labels = self.get_dataset() err = cross_validate(KNearest, dict(k=k), samples, labels) return k, err best_err, best_k = np.inf, -1 for k, err in self.run_jobs(f, xrange(1, 9)): if err < best_err: best_err, best_k = err, k print 'k = %d, error: %.2f %%' % (k, err*100) best_params = dict(k=best_k) print 'best params:', best_params, 'err: %.2f' % (best_err*100) return best_params if __name__ == '__main__': import getopt import sys print __doc__ args, _ = getopt.getopt(sys.argv[1:], '', ['model=']) args = dict(args) args.setdefault('--model', 'svm') args.setdefault('--env', '') if args['--model'] not in ['svm', 'knearest']: print 'unknown model "%s"' % args['--model'] sys.exit(1) t = clock() app = App() if args['--model'] == 'knearest': app.adjust_KNearest() else: app.adjust_SVM() print 'work time: %f s' % (clock() - t)