/* dlarf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static doublereal c_b4 = 1.; static doublereal c_b5 = 0.; static integer c__1 = 1; /* Subroutine */ int dlarf_(char *side, integer *m, integer *n, doublereal *v, integer *incv, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work) { /* System generated locals */ integer c_dim1, c_offset; doublereal d__1; /* Local variables */ integer i__; logical applyleft; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer lastc, lastv; extern integer iladlc_(integer *, integer *, doublereal *, integer *), iladlr_(integer *, integer *, doublereal *, integer *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLARF applies a real elementary reflector H to a real m by n matrix */ /* C, from either the left or the right. H is represented in the form */ /* H = I - tau * v * v' */ /* where tau is a real scalar and v is a real vector. */ /* If tau = 0, then H is taken to be the unit matrix. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': form H * C */ /* = 'R': form C * H */ /* M (input) INTEGER */ /* The number of rows of the matrix C. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. */ /* V (input) DOUBLE PRECISION array, dimension */ /* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */ /* or (1 + (N-1)*abs(INCV)) if SIDE = 'R' */ /* The vector v in the representation of H. V is not used if */ /* TAU = 0. */ /* INCV (input) INTEGER */ /* The increment between elements of v. INCV <> 0. */ /* TAU (input) DOUBLE PRECISION */ /* The value tau in the representation of H. */ /* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ /* On entry, the m by n matrix C. */ /* On exit, C is overwritten by the matrix H * C if SIDE = 'L', */ /* or C * H if SIDE = 'R'. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (N) if SIDE = 'L' */ /* or (M) if SIDE = 'R' */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --v; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ applyleft = lsame_(side, "L"); lastv = 0; lastc = 0; if (*tau != 0.) { /* Set up variables for scanning V. LASTV begins pointing to the end */ /* of V. */ if (applyleft) { lastv = *m; } else { lastv = *n; } if (*incv > 0) { i__ = (lastv - 1) * *incv + 1; } else { i__ = 1; } /* Look for the last non-zero row in V. */ while(lastv > 0 && v[i__] == 0.) { --lastv; i__ -= *incv; } if (applyleft) { /* Scan for the last non-zero column in C(1:lastv,:). */ lastc = iladlc_(&lastv, n, &c__[c_offset], ldc); } else { /* Scan for the last non-zero row in C(:,1:lastv). */ lastc = iladlr_(m, &lastv, &c__[c_offset], ldc); } } /* Note that lastc.eq.0 renders the BLAS operations null; no special */ /* case is needed at this level. */ if (applyleft) { /* Form H * C */ if (lastv > 0) { /* w(1:lastc,1) := C(1:lastv,1:lastc)' * v(1:lastv,1) */ dgemv_("Transpose", &lastv, &lastc, &c_b4, &c__[c_offset], ldc, & v[1], incv, &c_b5, &work[1], &c__1); /* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)' */ d__1 = -(*tau); dger_(&lastv, &lastc, &d__1, &v[1], incv, &work[1], &c__1, &c__[ c_offset], ldc); } } else { /* Form C * H */ if (lastv > 0) { /* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) */ dgemv_("No transpose", &lastc, &lastv, &c_b4, &c__[c_offset], ldc, &v[1], incv, &c_b5, &work[1], &c__1); /* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)' */ d__1 = -(*tau); dger_(&lastc, &lastv, &d__1, &work[1], &c__1, &v[1], incv, &c__[ c_offset], ldc); } } return 0; /* End of DLARF */ } /* dlarf_ */