/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include #include #include using namespace cv; using namespace std; /********************************* local utility *********************************/ namespace cv { using std::log; using std::max; using std::min; using std::sqrt; } namespace { const static Scalar colors[] = { CV_RGB(255, 0, 0), CV_RGB( 0, 255, 0), CV_RGB( 0, 0, 255), CV_RGB(255, 255, 0), CV_RGB(255, 0, 255), CV_RGB( 0, 255, 255), CV_RGB(255, 127, 127), CV_RGB(127, 127, 255), CV_RGB(127, 255, 127), CV_RGB(255, 255, 127), CV_RGB(127, 255, 255), CV_RGB(255, 127, 255), CV_RGB(127, 0, 0), CV_RGB( 0, 127, 0), CV_RGB( 0, 0, 127), CV_RGB(127, 127, 0), CV_RGB(127, 0, 127), CV_RGB( 0, 127, 127) }; size_t colors_mum = sizeof(colors)/sizeof(colors[0]); template void iota(FwIt first, FwIt last, T value) { while(first != last) *first++ = value++; } void computeNormals( const Octree& Octree, const vector& centers, vector& normals, vector& mask, float normalRadius, int minNeighbors = 20) { size_t normals_size = centers.size(); normals.resize(normals_size); if (mask.size() != normals_size) { size_t m = mask.size(); mask.resize(normals_size); if (normals_size > m) for(; m < normals_size; ++m) mask[m] = 1; } vector buffer; buffer.reserve(128); SVD svd; const static Point3f zero(0.f, 0.f, 0.f); for(size_t n = 0; n < normals_size; ++n) { if (mask[n] == 0) continue; const Point3f& center = centers[n]; Octree.getPointsWithinSphere(center, normalRadius, buffer); int buf_size = (int)buffer.size(); if (buf_size < minNeighbors) { normals[n] = Mesh3D::allzero; mask[n] = 0; continue; } //find the mean point for normalization Point3f mean(Mesh3D::allzero); for(int i = 0; i < buf_size; ++i) mean += buffer[i]; mean.x /= buf_size; mean.y /= buf_size; mean.z /= buf_size; double pxpx = 0; double pypy = 0; double pzpz = 0; double pxpy = 0; double pxpz = 0; double pypz = 0; for(int i = 0; i < buf_size; ++i) { const Point3f& p = buffer[i]; pxpx += (p.x - mean.x) * (p.x - mean.x); pypy += (p.y - mean.y) * (p.y - mean.y); pzpz += (p.z - mean.z) * (p.z - mean.z); pxpy += (p.x - mean.x) * (p.y - mean.y); pxpz += (p.x - mean.x) * (p.z - mean.z); pypz += (p.y - mean.y) * (p.z - mean.z); } //create and populate matrix with normalized nbrs double M_data[] = { pxpx, pxpy, pxpz, /**/ pxpy, pypy, pypz, /**/ pxpz, pypz, pzpz }; Mat M(3, 3, CV_64F, M_data); svd(M, SVD::MODIFY_A); /*normals[n] = Point3f( (float)((double*)svd.vt.data)[6], (float)((double*)svd.vt.data)[7], (float)((double*)svd.vt.data)[8] );*/ normals[n] = reinterpret_cast(svd.vt.data)[2]; mask[n] = 1; } } void initRotationMat(const Point3f& n, float out[9]) { double pitch = atan2(n.x, n.z); double pmat[] = { cos(pitch), 0, -sin(pitch) , 0 , 1, 0 , sin(pitch), 0, cos(pitch) }; double roll = atan2((double)n.y, n.x * pmat[3*2+0] + n.z * pmat[3*2+2]); double rmat[] = { 1, 0, 0, 0, cos(roll), -sin(roll) , 0, sin(roll), cos(roll) }; for(int i = 0; i < 3; ++i) for(int j = 0; j < 3; ++j) out[3*i+j] = (float)(rmat[3*i+0]*pmat[3*0+j] + rmat[3*i+1]*pmat[3*1+j] + rmat[3*i+2]*pmat[3*2+j]); } void transform(const Point3f& in, float matrix[9], Point3f& out) { out.x = in.x * matrix[3*0+0] + in.y * matrix[3*0+1] + in.z * matrix[3*0+2]; out.y = in.x * matrix[3*1+0] + in.y * matrix[3*1+1] + in.z * matrix[3*1+2]; out.z = in.x * matrix[3*2+0] + in.y * matrix[3*2+1] + in.z * matrix[3*2+2]; } #if CV_SSE2 void convertTransformMatrix(const float* matrix, float* sseMatrix) { sseMatrix[0] = matrix[0]; sseMatrix[1] = matrix[3]; sseMatrix[2] = matrix[6]; sseMatrix[3] = 0; sseMatrix[4] = matrix[1]; sseMatrix[5] = matrix[4]; sseMatrix[6] = matrix[7]; sseMatrix[7] = 0; sseMatrix[8] = matrix[2]; sseMatrix[9] = matrix[5]; sseMatrix[10] = matrix[8]; sseMatrix[11] = 0; } inline __m128 transformSSE(const __m128* matrix, const __m128& in) { assert(((size_t)matrix & 15) == 0); __m128 a0 = _mm_mul_ps(_mm_load_ps((float*)(matrix+0)), _mm_shuffle_ps(in,in,_MM_SHUFFLE(0,0,0,0))); __m128 a1 = _mm_mul_ps(_mm_load_ps((float*)(matrix+1)), _mm_shuffle_ps(in,in,_MM_SHUFFLE(1,1,1,1))); __m128 a2 = _mm_mul_ps(_mm_load_ps((float*)(matrix+2)), _mm_shuffle_ps(in,in,_MM_SHUFFLE(2,2,2,2))); return _mm_add_ps(_mm_add_ps(a0,a1),a2); } inline __m128i _mm_mullo_epi32_emul(const __m128i& a, __m128i& b) { __m128i pack = _mm_packs_epi32(a, a); return _mm_unpacklo_epi16(_mm_mullo_epi16(pack, b), _mm_mulhi_epi16(pack, b)); } #endif void computeSpinImages( const Octree& Octree, const vector& points, const vector& normals, vector& mask, Mat& spinImages, int imageWidth, float binSize) { float pixelsPerMeter = 1.f / binSize; float support = imageWidth * binSize; assert(normals.size() == points.size()); assert(mask.size() == points.size()); size_t points_size = points.size(); mask.resize(points_size); int height = imageWidth; int width = imageWidth; spinImages.create( (int)points_size, width*height, CV_32F ); int nthreads = getNumThreads(); int i; vector< vector > pointsInSpherePool(nthreads); for(i = 0; i < nthreads; i++) pointsInSpherePool[i].reserve(2048); float halfSuppport = support / 2; float searchRad = support * sqrt(5.f) / 2; // sqrt(sup*sup + (sup/2) * (sup/2) ) #ifdef _OPENMP #pragma omp parallel for num_threads(nthreads) #endif for(i = 0; i < (int)points_size; ++i) { if (mask[i] == 0) continue; int t = cvGetThreadNum(); vector& pointsInSphere = pointsInSpherePool[t]; const Point3f& center = points[i]; Octree.getPointsWithinSphere(center, searchRad, pointsInSphere); size_t inSphere_size = pointsInSphere.size(); if (inSphere_size == 0) { mask[i] = 0; continue; } const Point3f& normal = normals[i]; float rotmat[9]; initRotationMat(normal, rotmat); Point3f new_center; transform(center, rotmat, new_center); Mat spinImage = spinImages.row(i).reshape(1, height); float* spinImageData = (float*)spinImage.data; int step = width; spinImage = Scalar(0.); float alpha, beta; size_t j = 0; #if CV_SSE2 if (inSphere_size > 4 && checkHardwareSupport(CV_CPU_SSE2)) { __m128 rotmatSSE[3]; convertTransformMatrix(rotmat, (float*)rotmatSSE); __m128 center_x4 = _mm_set1_ps(new_center.x); __m128 center_y4 = _mm_set1_ps(new_center.y); __m128 center_z4 = _mm_set1_ps(new_center.z + halfSuppport); __m128 ppm4 = _mm_set1_ps(pixelsPerMeter); __m128i height4m1 = _mm_set1_epi32(spinImage.rows-1); __m128i width4m1 = _mm_set1_epi32(spinImage.cols-1); assert( spinImage.step <= 0xffff ); __m128i step4 = _mm_set1_epi16((short)step); __m128i zero4 = _mm_setzero_si128(); __m128i one4i = _mm_set1_epi32(1); __m128 zero4f = _mm_setzero_ps(); __m128 one4f = _mm_set1_ps(1.f); //__m128 two4f = _mm_set1_ps(2.f); int CV_DECL_ALIGNED(16) o[4]; for (; j <= inSphere_size - 5; j += 4) { __m128 pt0 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+0])); // x0 y0 z0 . __m128 pt1 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+1])); // x1 y1 z1 . __m128 pt2 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+2])); // x2 y2 z2 . __m128 pt3 = transformSSE(rotmatSSE, _mm_loadu_ps((float*)&pointsInSphere[j+3])); // x3 y3 z3 . __m128 z0 = _mm_unpackhi_ps(pt0, pt1); // z0 z1 . . __m128 z1 = _mm_unpackhi_ps(pt2, pt3); // z2 z3 . . __m128 beta4 = _mm_sub_ps(center_z4, _mm_movelh_ps(z0, z1)); // b0 b1 b2 b3 __m128 xy0 = _mm_unpacklo_ps(pt0, pt1); // x0 x1 y0 y1 __m128 xy1 = _mm_unpacklo_ps(pt2, pt3); // x2 x3 y2 y3 __m128 x4 = _mm_movelh_ps(xy0, xy1); // x0 x1 x2 x3 __m128 y4 = _mm_movehl_ps(xy1, xy0); // y0 y1 y2 y3 x4 = _mm_sub_ps(x4, center_x4); y4 = _mm_sub_ps(y4, center_y4); __m128 alpha4 = _mm_sqrt_ps(_mm_add_ps(_mm_mul_ps(x4,x4),_mm_mul_ps(y4,y4))); __m128 n1f4 = _mm_mul_ps( beta4, ppm4); /* beta4 float */ __m128 n2f4 = _mm_mul_ps(alpha4, ppm4); /* alpha4 float */ /* floor */ __m128i n1 = _mm_sub_epi32(_mm_cvttps_epi32( _mm_add_ps( n1f4, one4f ) ), one4i); __m128i n2 = _mm_sub_epi32(_mm_cvttps_epi32( _mm_add_ps( n2f4, one4f ) ), one4i); __m128 f1 = _mm_sub_ps( n1f4, _mm_cvtepi32_ps(n1) ); /* { beta4 } */ __m128 f2 = _mm_sub_ps( n2f4, _mm_cvtepi32_ps(n2) ); /* { alpha4 } */ __m128 f1f2 = _mm_mul_ps(f1, f2); // f1 * f2 __m128 omf1omf2 = _mm_add_ps(_mm_sub_ps(_mm_sub_ps(one4f, f2), f1), f1f2); // (1-f1) * (1-f2) __m128i mask = _mm_and_si128( _mm_andnot_si128(_mm_cmpgt_epi32(zero4, n1), _mm_cmpgt_epi32(height4m1, n1)), _mm_andnot_si128(_mm_cmpgt_epi32(zero4, n2), _mm_cmpgt_epi32(width4m1, n2))); __m128 maskf = _mm_cmpneq_ps(_mm_cvtepi32_ps(mask), zero4f); __m128 v00 = _mm_and_ps( omf1omf2 , maskf); // a00 b00 c00 d00 __m128 v01 = _mm_and_ps( _mm_sub_ps( f2, f1f2 ), maskf); // a01 b01 c01 d01 __m128 v10 = _mm_and_ps( _mm_sub_ps( f1, f1f2 ), maskf); // a10 b10 c10 d10 __m128 v11 = _mm_and_ps( f1f2 , maskf); // a11 b11 c11 d11 __m128i ofs4 = _mm_and_si128(_mm_add_epi32(_mm_mullo_epi32_emul(n1, step4), n2), mask); _mm_store_si128((__m128i*)o, ofs4); __m128 t0 = _mm_unpacklo_ps(v00, v01); // a00 a01 b00 b01 __m128 t1 = _mm_unpacklo_ps(v10, v11); // a10 a11 b10 b11 __m128 u0 = _mm_movelh_ps(t0, t1); // a00 a01 a10 a11 __m128 u1 = _mm_movehl_ps(t1, t0); // b00 b01 b10 b11 __m128 x0 = _mm_loadl_pi(u0, (__m64*)(spinImageData+o[0])); // x00 x01 x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[0]+step)); // x00 x01 x10 x11 x0 = _mm_add_ps(x0, u0); _mm_storel_pi((__m64*)(spinImageData+o[0]), x0); _mm_storeh_pi((__m64*)(spinImageData+o[0]+step), x0); x0 = _mm_loadl_pi(x0, (__m64*)(spinImageData+o[1])); // y00 y01 x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[1]+step)); // y00 y01 y10 y11 x0 = _mm_add_ps(x0, u1); _mm_storel_pi((__m64*)(spinImageData+o[1]), x0); _mm_storeh_pi((__m64*)(spinImageData+o[1]+step), x0); t0 = _mm_unpackhi_ps(v00, v01); // c00 c01 d00 d01 t1 = _mm_unpackhi_ps(v10, v11); // c10 c11 d10 d11 u0 = _mm_movelh_ps(t0, t1); // c00 c01 c10 c11 u1 = _mm_movehl_ps(t1, t0); // d00 d01 d10 d11 x0 = _mm_loadl_pi(x0, (__m64*)(spinImageData+o[2])); // z00 z01 x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[2]+step)); // z00 z01 z10 z11 x0 = _mm_add_ps(x0, u0); _mm_storel_pi((__m64*)(spinImageData+o[2]), x0); _mm_storeh_pi((__m64*)(spinImageData+o[2]+step), x0); x0 = _mm_loadl_pi(x0, (__m64*)(spinImageData+o[3])); // w00 w01 x0 = _mm_loadh_pi(x0, (__m64*)(spinImageData+o[3]+step)); // w00 w01 w10 w11 x0 = _mm_add_ps(x0, u1); _mm_storel_pi((__m64*)(spinImageData+o[3]), x0); _mm_storeh_pi((__m64*)(spinImageData+o[3]+step), x0); } } #endif for (; j < inSphere_size; ++j) { Point3f pt; transform(pointsInSphere[j], rotmat, pt); beta = halfSuppport - (pt.z - new_center.z); if (beta >= support || beta < 0) continue; alpha = sqrt( (new_center.x - pt.x) * (new_center.x - pt.x) + (new_center.y - pt.y) * (new_center.y - pt.y) ); float n1f = beta * pixelsPerMeter; float n2f = alpha * pixelsPerMeter; int n1 = cvFloor(n1f); int n2 = cvFloor(n2f); float f1 = n1f - n1; float f2 = n2f - n2; if ((unsigned)n1 >= (unsigned)(spinImage.rows-1) || (unsigned)n2 >= (unsigned)(spinImage.cols-1)) continue; float *cellptr = spinImageData + step * n1 + n2; float f1f2 = f1*f2; cellptr[0] += 1 - f1 - f2 + f1f2; cellptr[1] += f2 - f1f2; cellptr[step] += f1 - f1f2; cellptr[step+1] += f1f2; } mask[i] = 1; } } } /********************************* Mesh3D *********************************/ const Point3f cv::Mesh3D::allzero(0.f, 0.f, 0.f); cv::Mesh3D::Mesh3D() { resolution = -1; } cv::Mesh3D::Mesh3D(const vector& _vtx) { resolution = -1; vtx.resize(_vtx.size()); std::copy(_vtx.begin(), _vtx.end(), vtx.begin()); } cv::Mesh3D::~Mesh3D() {} void cv::Mesh3D::buildOctree() { if (octree.getNodes().empty()) octree.buildTree(vtx); } void cv::Mesh3D::clearOctree(){ octree = Octree(); } float cv::Mesh3D::estimateResolution(float tryRatio) { const size_t neighbors = 3; const size_t minReasonable = 10; size_t tryNum = static_cast(tryRatio * vtx.size()); tryNum = min(max(tryNum, minReasonable), vtx.size()); CvMat desc = cvMat((int)vtx.size(), 3, CV_32F, &vtx[0]); CvFeatureTree* tr = cvCreateKDTree(&desc); vector dist(tryNum * neighbors); vector inds(tryNum * neighbors); vector query; RNG& rng = theRNG(); for(size_t i = 0; i < tryNum; ++i) query.push_back(vtx[rng.next() % vtx.size()]); CvMat cvinds = cvMat( (int)tryNum, neighbors, CV_32S, &inds[0] ); CvMat cvdist = cvMat( (int)tryNum, neighbors, CV_64F, &dist[0] ); CvMat cvquery = cvMat( (int)tryNum, 3, CV_32F, &query[0] ); cvFindFeatures(tr, &cvquery, &cvinds, &cvdist, neighbors, 50); cvReleaseFeatureTree(tr); const int invalid_dist = -2; for(size_t i = 0; i < tryNum; ++i) if (inds[i] == -1) dist[i] = invalid_dist; dist.resize(remove(dist.begin(), dist.end(), invalid_dist) - dist.begin()); sort(dist, less()); return resolution = (float)dist[ dist.size() / 2 ]; } void cv::Mesh3D::computeNormals(float normalRadius, int minNeighbors) { buildOctree(); vector mask; ::computeNormals(octree, vtx, normals, mask, normalRadius, minNeighbors); } void cv::Mesh3D::computeNormals(const vector& subset, float normalRadius, int minNeighbors) { buildOctree(); vector mask(vtx.size(), 0); for(size_t i = 0; i < subset.size(); ++i) mask[subset[i]] = 1; ::computeNormals(octree, vtx, normals, mask, normalRadius, minNeighbors); } void cv::Mesh3D::writeAsVrml(const String& file, const vector& colors) const { ofstream ofs(file.c_str()); ofs << "#VRML V2.0 utf8" << endl; ofs << "Shape" << std::endl << "{" << endl; ofs << "geometry PointSet" << endl << "{" << endl; ofs << "coord Coordinate" << endl << "{" << endl; ofs << "point[" << endl; for(size_t i = 0; i < vtx.size(); ++i) ofs << vtx[i].x << " " << vtx[i].y << " " << vtx[i].z << endl; ofs << "]" << endl; //point[ ofs << "}" << endl; //Coordinate{ if (vtx.size() == colors.size()) { ofs << "color Color" << endl << "{" << endl; ofs << "color[" << endl; for(size_t i = 0; i < colors.size(); ++i) ofs << (float)colors[i][2] << " " << (float)colors[i][1] << " " << (float)colors[i][0] << endl; ofs << "]" << endl; //color[ ofs << "}" << endl; //color Color{ } ofs << "}" << endl; //PointSet{ ofs << "}" << endl; //Shape{ } /********************************* SpinImageModel *********************************/ bool cv::SpinImageModel::spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result) { struct Math { static double atanh(double x) { return 0.5 * std::log( (1 + x) / (1 - x) ); } }; const float* s1 = spin1.ptr(); const float* s2 = spin2.ptr(); int spin_sz = spin1.cols * spin1.rows; double sum1 = 0.0, sum2 = 0.0, sum12 = 0.0, sum11 = 0.0, sum22 = 0.0; int N = 0; int i = 0; #if CV_SSE2//____________TEMPORARY_DISABLED_____________ float CV_DECL_ALIGNED(16) su1[4], su2[4], su11[4], su22[4], su12[4], n[4]; __m128 zerof4 = _mm_setzero_ps(); __m128 onef4 = _mm_set1_ps(1.f); __m128 Nf4 = zerof4; __m128 sum1f4 = zerof4; __m128 sum2f4 = zerof4; __m128 sum11f4 = zerof4; __m128 sum22f4 = zerof4; __m128 sum12f4 = zerof4; for(; i < spin_sz - 5; i += 4) { __m128 v1f4 = _mm_loadu_ps(s1 + i); __m128 v2f4 = _mm_loadu_ps(s2 + i); __m128 mskf4 = _mm_and_ps(_mm_cmpneq_ps(v1f4, zerof4), _mm_cmpneq_ps(v2f4, zerof4)); if( !_mm_movemask_ps(mskf4) ) continue; Nf4 = _mm_add_ps(Nf4, _mm_and_ps(onef4, mskf4)); v1f4 = _mm_and_ps(v1f4, mskf4); v2f4 = _mm_and_ps(v2f4, mskf4); sum1f4 = _mm_add_ps(sum1f4, v1f4); sum2f4 = _mm_add_ps(sum2f4, v2f4); sum11f4 = _mm_add_ps(sum11f4, _mm_mul_ps(v1f4, v1f4)); sum22f4 = _mm_add_ps(sum22f4, _mm_mul_ps(v2f4, v2f4)); sum12f4 = _mm_add_ps(sum12f4, _mm_mul_ps(v1f4, v2f4)); } _mm_store_ps( su1, sum1f4 ); _mm_store_ps( su2, sum2f4 ); _mm_store_ps(su11, sum11f4 ); _mm_store_ps(su22, sum22f4 ); _mm_store_ps(su12, sum12f4 ); _mm_store_ps(n, Nf4 ); N = static_cast(n[0] + n[1] + n[2] + n[3]); sum1 = su1[0] + su1[1] + su1[2] + su1[3]; sum2 = su2[0] + su2[1] + su2[2] + su2[3]; sum11 = su11[0] + su11[1] + su11[2] + su11[3]; sum22 = su22[0] + su22[1] + su22[2] + su22[3]; sum12 = su12[0] + su12[1] + su12[2] + su12[3]; #endif for(; i < spin_sz; ++i) { float v1 = s1[i]; float v2 = s2[i]; if( !v1 || !v2 ) continue; N++; sum1 += v1; sum2 += v2; sum11 += v1 * v1; sum22 += v2 * v2; sum12 += v1 * v2; } if( N < 4 ) return false; double sum1sum1 = sum1 * sum1; double sum2sum2 = sum2 * sum2; double Nsum12 = N * sum12; double Nsum11 = N * sum11; double Nsum22 = N * sum22; if (Nsum11 == sum1sum1 || Nsum22 == sum2sum2) return false; double corr = (Nsum12 - sum1 * sum2) / sqrt( (Nsum11 - sum1sum1) * (Nsum22 - sum2sum2) ); double atanh = Math::atanh(corr); result = (float)( atanh * atanh - lambda * ( 1.0 / (N - 3) ) ); return true; } inline Point2f cv::SpinImageModel::calcSpinMapCoo(const Point3f& p, const Point3f& v, const Point3f& n) { /*Point3f PmV(p.x - v.x, p.y - v.y, p.z - v.z); float normalNorm = (float)norm(n); float beta = PmV.dot(n) / normalNorm; float pmcNorm = (float)norm(PmV); float alpha = sqrt( pmcNorm * pmcNorm - beta * beta); return Point2f(alpha, beta);*/ float pmv_x = p.x - v.x, pmv_y = p.y - v.y, pmv_z = p.z - v.z; float beta = (pmv_x * n.x + pmv_y + n.y + pmv_z * n.z) / sqrt(n.x * n.x + n.y * n.y + n.z * n.z); float alpha = sqrt( pmv_x * pmv_x + pmv_y * pmv_y + pmv_z * pmv_z - beta * beta); return Point2f(alpha, beta); } inline float cv::SpinImageModel::geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1, const Point3f& pointModel1, const Point3f& normalModel1, const Point3f& pointScene2, const Point3f& normalScene2, const Point3f& pointModel2, const Point3f& normalModel2) { Point2f Sm2_to_m1, Ss2_to_s1; Point2f Sm1_to_m2, Ss1_to_s2; double n_Sm2_to_m1 = norm(Sm2_to_m1 = calcSpinMapCoo(pointModel2, pointModel1, normalModel1)); double n_Ss2_to_s1 = norm(Ss2_to_s1 = calcSpinMapCoo(pointScene2, pointScene1, normalScene1)); double gc21 = 2 * norm(Sm2_to_m1 - Ss2_to_s1) / (n_Sm2_to_m1 + n_Ss2_to_s1 ) ; double n_Sm1_to_m2 = norm(Sm1_to_m2 = calcSpinMapCoo(pointModel1, pointModel2, normalModel2)); double n_Ss1_to_s2 = norm(Ss1_to_s2 = calcSpinMapCoo(pointScene1, pointScene2, normalScene2)); double gc12 = 2 * norm(Sm1_to_m2 - Ss1_to_s2) / (n_Sm1_to_m2 + n_Ss1_to_s2 ) ; return (float)max(gc12, gc21); } inline float cv::SpinImageModel::groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1, const Point3f& pointModel1, const Point3f& normalModel1, const Point3f& pointScene2, const Point3f& normalScene2, const Point3f& pointModel2, const Point3f& normalModel2, float gamma) { Point2f Sm2_to_m1, Ss2_to_s1; Point2f Sm1_to_m2, Ss1_to_s2; float gamma05_inv = 0.5f/gamma; double n_Sm2_to_m1 = norm(Sm2_to_m1 = calcSpinMapCoo(pointModel2, pointModel1, normalModel1)); double n_Ss2_to_s1 = norm(Ss2_to_s1 = calcSpinMapCoo(pointScene2, pointScene1, normalScene1)); double gc21 = 2 * norm(Sm2_to_m1 - Ss2_to_s1) / (n_Sm2_to_m1 + n_Ss2_to_s1 ); double wgc21 = gc21 / (1 - exp( -(n_Sm2_to_m1 + n_Ss2_to_s1) * gamma05_inv ) ); double n_Sm1_to_m2 = norm(Sm1_to_m2 = calcSpinMapCoo(pointModel1, pointModel2, normalModel2)); double n_Ss1_to_s2 = norm(Ss1_to_s2 = calcSpinMapCoo(pointScene1, pointScene2, normalScene2)); double gc12 = 2 * norm(Sm1_to_m2 - Ss1_to_s2) / (n_Sm1_to_m2 + n_Ss1_to_s2 ); double wgc12 = gc12 / (1 - exp( -(n_Sm1_to_m2 + n_Ss1_to_s2) * gamma05_inv ) ); return (float)max(wgc12, wgc21); } cv::SpinImageModel::SpinImageModel(const Mesh3D& _mesh) : mesh(_mesh) , out(0) { if (mesh.vtx.empty()) throw Mesh3D::EmptyMeshException(); defaultParams(); } cv::SpinImageModel::SpinImageModel() : out(0) { defaultParams(); } cv::SpinImageModel::~SpinImageModel() {} void cv::SpinImageModel::setLogger(ostream* log) { out = log; } void cv::SpinImageModel::defaultParams() { normalRadius = 0.f; minNeighbors = 20; binSize = 0.f; /* autodetect according to mesh resolution */ imageWidth = 32; lambda = 0.f; /* autodetect according to medan non zero images bin */ gamma = 0.f; /* autodetect according to mesh resolution */ T_GeometriccConsistency = 0.25f; T_GroupingCorespondances = 0.25f; }; Mat cv::SpinImageModel::packRandomScaledSpins(bool separateScale, size_t xCount, size_t yCount) const { size_t spinNum = getSpinCount(); size_t num = min(spinNum, xCount * yCount); if (num == 0) return Mat(); RNG& rng = theRNG(); vector spins; for(size_t i = 0; i < num; ++i) spins.push_back(getSpinImage( rng.next() % spinNum ).reshape(1, imageWidth)); if (separateScale) for(size_t i = 0; i < num; ++i) { double max; Mat spin8u; minMaxLoc(spins[i], 0, &max); spins[i].convertTo(spin8u, CV_8U, -255.0/max, 255.0); spins[i] = spin8u; } else { double totalMax = 0; for(size_t i = 0; i < num; ++i) { double m; minMaxLoc(spins[i], 0, &m); totalMax = max(m, totalMax); } for(size_t i = 0; i < num; ++i) { Mat spin8u; spins[i].convertTo(spin8u, CV_8U, -255.0/totalMax, 255.0); spins[i] = spin8u; } } int sz = spins.front().cols; Mat result((int)(yCount * sz + (yCount - 1)), (int)(xCount * sz + (xCount - 1)), CV_8UC3); result = colors[(static_cast(cvGetTickCount()/cvGetTickFrequency())/1000) % colors_mum]; size_t pos = 0; for(size_t y = 0; y < yCount; ++y) for(size_t x = 0; x < xCount; ++x) if (pos < num) { int starty = (int)((y + 0) * sz + y); int endy = (int)((y + 1) * sz + y); int startx = (int)((x + 0) * sz + x); int endx = (int)((x + 1) * sz + x); Mat color; cvtColor(spins[pos++], color, CV_GRAY2BGR); Mat roi = result(Range(starty, endy), Range(startx, endx)); color.copyTo(roi); } return result; } void cv::SpinImageModel::selectRandomSubset(float ratio) { ratio = min(max(ratio, 0.f), 1.f); size_t vtxSize = mesh.vtx.size(); size_t setSize = static_cast(vtxSize * ratio); if (setSize == 0) { subset.clear(); } else if (setSize == vtxSize) { subset.resize(vtxSize); iota(subset.begin(), subset.end(), 0); } else { RNG& rnd = theRNG(); vector left(vtxSize); iota(left.begin(), left.end(), (size_t)0); subset.resize(setSize); for(size_t i = 0; i < setSize; ++i) { int pos = rnd.next() % left.size(); subset[i] = (int)left[pos]; left[pos] = left.back(); left.resize(left.size() - 1); } sort(subset, less()); } } void cv::SpinImageModel::setSubset(const vector& ss) { subset = ss; } void cv::SpinImageModel::repackSpinImages(const vector& mask, Mat& spinImages, bool reAlloc) const { if (reAlloc) { size_t spinCount = mask.size() - count(mask.begin(), mask.end(), (uchar)0); Mat newImgs((int)spinCount, spinImages.cols, spinImages.type()); int pos = 0; for(size_t t = 0; t < mask.size(); ++t) if (mask[t]) { Mat row = newImgs.row(pos++); spinImages.row((int)t).copyTo(row); } spinImages = newImgs; } else { int last = (int)mask.size(); int dest = (int)(find(mask.begin(), mask.end(), (uchar)0) - mask.begin()); if (dest == last) return; int first = dest + 1; for (; first != last; ++first) if (mask[first] != 0) { Mat row = spinImages.row(dest); spinImages.row(first).copyTo(row); ++dest; } spinImages = spinImages.rowRange(0, dest); } } void cv::SpinImageModel::compute() { /* estimate binSize */ if (binSize == 0.f) { if (mesh.resolution == -1.f) mesh.estimateResolution(); binSize = mesh.resolution; } /* estimate normalRadius */ normalRadius = normalRadius != 0.f ? normalRadius : binSize * imageWidth / 2; mesh.buildOctree(); if (subset.empty()) { mesh.computeNormals(normalRadius, minNeighbors); subset.resize(mesh.vtx.size()); iota(subset.begin(), subset.end(), 0); } else mesh.computeNormals(subset, normalRadius, minNeighbors); vector mask(mesh.vtx.size(), 0); for(size_t i = 0; i < subset.size(); ++i) if (mesh.normals[subset[i]] == Mesh3D::allzero) subset[i] = -1; else mask[subset[i]] = 1; subset.resize( remove(subset.begin(), subset.end(), -1) - subset.begin() ); vector vtx; vector normals; for(size_t i = 0; i < mask.size(); ++i) if(mask[i]) { vtx.push_back(mesh.vtx[i]); normals.push_back(mesh.normals[i]); } vector spinMask(vtx.size(), 1); computeSpinImages( mesh.octree, vtx, normals, spinMask, spinImages, imageWidth, binSize); repackSpinImages(spinMask, spinImages); size_t mask_pos = 0; for(size_t i = 0; i < mask.size(); ++i) if(mask[i]) if (spinMask[mask_pos++] == 0) subset.resize( remove(subset.begin(), subset.end(), (int)i) - subset.begin() ); } void cv::SpinImageModel::matchSpinToModel(const Mat& spin, vector& indeces, vector& corrCoeffs, bool useExtremeOutliers) const { const SpinImageModel& model = *this; indeces.clear(); corrCoeffs.clear(); vector corrs(model.spinImages.rows); vector masks(model.spinImages.rows); vector cleanCorrs; cleanCorrs.reserve(model.spinImages.rows); for(int i = 0; i < model.spinImages.rows; ++i) { masks[i] = spinCorrelation(spin, model.spinImages.row(i), model.lambda, corrs[i]); if (masks[i]) cleanCorrs.push_back(corrs[i]); } /* Filtering by measure histogram */ size_t total = cleanCorrs.size(); if(total < 5) return; sort(cleanCorrs, less()); float lower_fourth = cleanCorrs[(1 * total) / 4 - 1]; float upper_fourth = cleanCorrs[(3 * total) / 4 - 0]; float fourth_spread = upper_fourth - lower_fourth; //extreme or moderate? float coef = useExtremeOutliers ? 3.0f : 1.5f; float histThresHi = upper_fourth + coef * fourth_spread; //float histThresLo = lower_fourth - coef * fourth_spread; for(size_t i = 0; i < corrs.size(); ++i) if (masks[i]) if (/* corrs[i] < histThresLo || */ corrs[i] > histThresHi) { indeces.push_back((int)i); corrCoeffs.push_back(corrs[i]); } } namespace { struct Match { int sceneInd; int modelInd; float measure; Match(){} Match(int sceneIndex, int modelIndex, float coeff) : sceneInd(sceneIndex), modelInd(modelIndex), measure(coeff) {} operator float() const { return measure; } }; typedef set group_t; typedef group_t::iterator iter; typedef group_t::const_iterator citer; struct WgcHelper { const group_t& grp; const Mat& mat; WgcHelper(const group_t& group, const Mat& groupingMat) : grp(group), mat(groupingMat){} float operator()(size_t leftInd) const { return Wgc(leftInd, grp); } /* Wgc( correspondence_C, group_{C1..Cn} ) = max_i=1..n_( Wgc(C, Ci) ) */ float Wgc(const size_t corespInd, const group_t& group) const { const float* wgcLine = mat.ptr((int)corespInd); float maximum = numeric_limits::min(); for(citer pos = group.begin(); pos != group.end(); ++pos) maximum = max(wgcLine[*pos], maximum); return maximum; } private: WgcHelper& operator=(const WgcHelper& helper); }; } void cv::SpinImageModel::match(const SpinImageModel& scene, vector< vector >& result) { if (mesh.vtx.empty()) throw Mesh3D::EmptyMeshException(); result.clear(); SpinImageModel& model = *this; const float infinity = numeric_limits::infinity(); const float float_max = numeric_limits::max(); /* estimate gamma */ if (model.gamma == 0.f) { if (model.mesh.resolution == -1.f) model.mesh.estimateResolution(); model.gamma = 4 * model.mesh.resolution; } /* estimate lambda */ if (model.lambda == 0.f) { vector nonzero(model.spinImages.rows); for(int i = 0; i < model.spinImages.rows; ++i) nonzero[i] = countNonZero(model.spinImages.row(i)); sort(nonzero, less()); model.lambda = static_cast( nonzero[ nonzero.size()/2 ] ) / 2; } TickMeter corr_timer; corr_timer.start(); vector allMatches; for(int i = 0; i < scene.spinImages.rows; ++i) { vector indeces; vector coeffs; matchSpinToModel(scene.spinImages.row(i), indeces, coeffs); for(size_t t = 0; t < indeces.size(); ++t) allMatches.push_back(Match(i, indeces[t], coeffs[t])); if (out) if (i % 100 == 0) *out << "Comparing scene spinimage " << i << " of " << scene.spinImages.rows << endl; } corr_timer.stop(); if (out) *out << "Spin correlation time = " << corr_timer << endl; if (out) *out << "Matches number = " << allMatches.size() << endl; if(allMatches.empty()) return; /* filtering by similarity measure */ const float fraction = 0.5f; float maxMeasure = max_element(allMatches.begin(), allMatches.end(), less())->measure; allMatches.erase( remove_if(allMatches.begin(), allMatches.end(), bind2nd(less(), maxMeasure * fraction)), allMatches.end()); if (out) *out << "Matches number [filtered by similarity measure] = " << allMatches.size() << endl; int matchesSize = (int)allMatches.size(); if(matchesSize == 0) return; /* filtering by geometric consistency */ for(int i = 0; i < matchesSize; ++i) { int consistNum = 1; float gc = float_max; for(int j = 0; j < matchesSize; ++j) if (i != j) { const Match& mi = allMatches[i]; const Match& mj = allMatches[j]; if (mi.sceneInd == mj.sceneInd || mi.modelInd == mj.modelInd) gc = float_max; else { const Point3f& pointSceneI = scene.getSpinVertex(mi.sceneInd); const Point3f& normalSceneI = scene.getSpinNormal(mi.sceneInd); const Point3f& pointModelI = model.getSpinVertex(mi.modelInd); const Point3f& normalModelI = model.getSpinNormal(mi.modelInd); const Point3f& pointSceneJ = scene.getSpinVertex(mj.sceneInd); const Point3f& normalSceneJ = scene.getSpinNormal(mj.sceneInd); const Point3f& pointModelJ = model.getSpinVertex(mj.modelInd); const Point3f& normalModelJ = model.getSpinNormal(mj.modelInd); gc = geometricConsistency(pointSceneI, normalSceneI, pointModelI, normalModelI, pointSceneJ, normalSceneJ, pointModelJ, normalModelJ); } if (gc < model.T_GeometriccConsistency) ++consistNum; } if (consistNum < matchesSize / 4) /* failed consistensy test */ allMatches[i].measure = infinity; } allMatches.erase( remove_if(allMatches.begin(), allMatches.end(), bind2nd(equal_to(), infinity)), allMatches.end()); if (out) *out << "Matches number [filtered by geometric consistency] = " << allMatches.size() << endl; matchesSize = (int)allMatches.size(); if(matchesSize == 0) return; if (out) *out << "grouping ..." << endl; Mat groupingMat((int)matchesSize, (int)matchesSize, CV_32F); groupingMat = Scalar(0); /* grouping */ for(int j = 0; j < matchesSize; ++j) for(int i = j + 1; i < matchesSize; ++i) { const Match& mi = allMatches[i]; const Match& mj = allMatches[j]; if (mi.sceneInd == mj.sceneInd || mi.modelInd == mj.modelInd) { groupingMat.ptr(i)[j] = float_max; groupingMat.ptr(j)[i] = float_max; continue; } const Point3f& pointSceneI = scene.getSpinVertex(mi.sceneInd); const Point3f& normalSceneI = scene.getSpinNormal(mi.sceneInd); const Point3f& pointModelI = model.getSpinVertex(mi.modelInd); const Point3f& normalModelI = model.getSpinNormal(mi.modelInd); const Point3f& pointSceneJ = scene.getSpinVertex(mj.sceneInd); const Point3f& normalSceneJ = scene.getSpinNormal(mj.sceneInd); const Point3f& pointModelJ = model.getSpinVertex(mj.modelInd); const Point3f& normalModelJ = model.getSpinNormal(mj.modelInd); float wgc = groupingCreteria(pointSceneI, normalSceneI, pointModelI, normalModelI, pointSceneJ, normalSceneJ, pointModelJ, normalModelJ, model.gamma); groupingMat.ptr(i)[j] = wgc; groupingMat.ptr(j)[i] = wgc; } group_t allMatchesInds; for(int i = 0; i < matchesSize; ++i) allMatchesInds.insert(i); vector buf(matchesSize); float *buf_beg = &buf[0]; vector groups; for(int g = 0; g < matchesSize; ++g) { if (out) if (g % 100 == 0) *out << "G = " << g << endl; group_t left = allMatchesInds; group_t group; left.erase(g); group.insert(g); for(;;) { size_t left_size = left.size(); if (left_size == 0) break; std::transform(left.begin(), left.end(), buf_beg, WgcHelper(group, groupingMat)); size_t minInd = min_element(buf_beg, buf_beg + left_size) - buf_beg; if (buf[minInd] < model.T_GroupingCorespondances) /* can add corespondance to group */ { iter pos = left.begin(); advance(pos, minInd); group.insert(*pos); left.erase(pos); } else break; } if (group.size() >= 4) groups.push_back(group); } /* converting the data to final result */ for(size_t i = 0; i < groups.size(); ++i) { const group_t& group = groups[i]; vector< Vec2i > outgrp; for(citer pos = group.begin(); pos != group.end(); ++pos) { const Match& m = allMatches[*pos]; outgrp.push_back(Vec2i(subset[m.modelInd], scene.subset[m.sceneInd])); } result.push_back(outgrp); } } cv::TickMeter::TickMeter() { reset(); } int64 cv::TickMeter::getTimeTicks() const { return sumTime; } double cv::TickMeter::getTimeMicro() const { return (double)getTimeTicks()/cvGetTickFrequency(); } double cv::TickMeter::getTimeMilli() const { return getTimeMicro()*1e-3; } double cv::TickMeter::getTimeSec() const { return getTimeMilli()*1e-3; } int64 cv::TickMeter::getCounter() const { return counter; } void cv::TickMeter::reset() {startTime = 0; sumTime = 0; counter = 0; } void cv::TickMeter::start(){ startTime = cvGetTickCount(); } void cv::TickMeter::stop() { int64 time = cvGetTickCount(); if ( startTime == 0 ) return; ++counter; sumTime += ( time - startTime ); startTime = 0; } std::ostream& cv::operator<<(std::ostream& out, const TickMeter& tm){ return out << tm.getTimeSec() << "sec"; }