package org.opencv.test.features; import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.core.Point; import org.opencv.core.Scalar; import org.opencv.core.KeyPoint; import org.opencv.features.ORB; import org.opencv.test.OpenCVTestCase; import org.opencv.test.OpenCVTestRunner; import org.opencv.imgproc.Imgproc; public class ORBDescriptorExtractorTest extends OpenCVTestCase { ORB extractor; int matSize; public static void assertDescriptorsClose(Mat expected, Mat actual, int allowedDistance) { double distance = Core.norm(expected, actual, Core.NORM_HAMMING); assertTrue("expected:<" + allowedDistance + "> but was:<" + distance + ">", distance <= allowedDistance); } private Mat getTestImg() { Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2); Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2); return cross; } @Override protected void setUp() throws Exception { super.setUp(); extractor = ORB.create(); matSize = 100; } public void testComputeListOfMatListOfListOfKeyPointListOfMat() { fail("Not yet implemented"); } public void testComputeMatListOfKeyPointMat() { KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1); MatOfKeyPoint keypoints = new MatOfKeyPoint(point); Mat img = getTestImg(); Mat descriptors = new Mat(); extractor.compute(img, keypoints, descriptors); Mat truth = new Mat(1, 32, CvType.CV_8UC1) { { put(0, 0, 6, 74, 6, 129, 2, 130, 56, 0, 44, 132, 66, 165, 172, 6, 3, 72, 102, 61, 171, 214, 0, 144, 65, 232, 4, 32, 138, 131, 4, 21, 37, 217); } }; assertDescriptorsClose(truth, descriptors, 1); } public void testCreate() { assertNotNull(extractor); } public void testDescriptorSize() { assertEquals(32, extractor.descriptorSize()); } public void testDescriptorType() { assertEquals(CvType.CV_8U, extractor.descriptorType()); } public void testEmpty() { // assertFalse(extractor.empty()); fail("Not yet implemented"); // ORB does not override empty() method } public void testReadYml() { KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1); MatOfKeyPoint keypoints = new MatOfKeyPoint(point); Mat img = getTestImg(); Mat descriptors = new Mat(); String filename = OpenCVTestRunner.getTempFileName("yml"); writeFile(filename, "%YAML:1.0\n---\nnfeatures: 500\nscaleFactor: 1.1\nnlevels: 3\nedgeThreshold: 31\nfirstLevel: 0\nwta_k: 2\nscoreType: 0\npatchSize: 31\nfastThreshold: 20\n"); extractor.read(filename); assertEquals(500, extractor.getMaxFeatures()); assertEquals(1.1, extractor.getScaleFactor()); assertEquals(3, extractor.getNLevels()); assertEquals(31, extractor.getEdgeThreshold()); assertEquals(0, extractor.getFirstLevel()); assertEquals(2, extractor.getWTA_K()); assertEquals(0, extractor.getScoreType()); assertEquals(31, extractor.getPatchSize()); assertEquals(20, extractor.getFastThreshold()); extractor.compute(img, keypoints, descriptors); Mat truth = new Mat(1, 32, CvType.CV_8UC1) { { put(0, 0, 6, 10, 22, 5, 2, 130, 56, 0, 44, 164, 66, 165, 140, 6, 1, 72, 38, 61, 163, 210, 0, 208, 1, 104, 4, 32, 74, 131, 0, 37, 37, 67); } }; assertDescriptorsClose(truth, descriptors, 1); } public void testWriteYml() { String filename = OpenCVTestRunner.getTempFileName("yml"); extractor.write(filename); String truth = "%YAML:1.0\n---\nname: \"Feature2D.ORB\"\nnfeatures: 500\nscaleFactor: 1.2000000476837158\nnlevels: 8\nedgeThreshold: 31\nfirstLevel: 0\nwta_k: 2\nscoreType: 0\npatchSize: 31\nfastThreshold: 20\n"; // String truth = "%YAML:1.0\n---\n"; String actual = readFile(filename); actual = actual.replaceAll("e\\+000", "e+00"); // NOTE: workaround for different platforms double representation assertEquals(truth, actual); } }