package org.opencv.test.features; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.core.Point; import org.opencv.core.Scalar; import org.opencv.core.KeyPoint; import org.opencv.features.SIFT; import org.opencv.test.OpenCVTestCase; import org.opencv.test.OpenCVTestRunner; import org.opencv.imgproc.Imgproc; import org.opencv.features.SIFT; public class SIFTDescriptorExtractorTest extends OpenCVTestCase { SIFT extractor; KeyPoint keypoint; int matSize; Mat truth; private Mat getTestImg() { Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2); Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2); return cross; } @Override protected void setUp() throws Exception { super.setUp(); extractor = SIFT.create(); keypoint = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1); matSize = 100; truth = new Mat(1, 128, CvType.CV_32FC1) { { put(0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 15, 23, 22, 20, 24, 2, 0, 0, 7, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 16, 13, 2, 0, 0, 117, 86, 79, 68, 117, 42, 5, 5, 79, 60, 117, 25, 9, 2, 28, 19, 11, 13, 20, 2, 0, 0, 5, 8, 0, 0, 76, 58, 34, 31, 97, 16, 95, 49, 117, 92, 117, 112, 117, 76, 117, 54, 117, 25, 29, 22, 117, 117, 16, 11, 14, 1, 0, 0, 22, 26, 0, 0, 0, 0, 1, 4, 15, 2, 47, 8, 0, 0, 82, 56, 31, 17, 81, 12, 0, 0, 26, 23, 18, 23, 0, 0, 0, 0, 0, 0, 0, 0 ); } }; } public void testComputeListOfMatListOfListOfKeyPointListOfMat() { fail("Not yet implemented"); } public void testComputeMatListOfKeyPointMat() { MatOfKeyPoint keypoints = new MatOfKeyPoint(keypoint); Mat img = getTestImg(); Mat descriptors = new Mat(); extractor.compute(img, keypoints, descriptors); assertMatEqual(truth, descriptors, EPS); } public void testCreate() { assertNotNull(extractor); } public void testDescriptorSize() { assertEquals(128, extractor.descriptorSize()); } public void testDescriptorType() { assertEquals(CvType.CV_32F, extractor.descriptorType()); } public void testEmpty() { // assertFalse(extractor.empty()); fail("Not yet implemented"); // SIFT does not override empty() method } public void testReadYml() { String filename = OpenCVTestRunner.getTempFileName("yml"); writeFile(filename, "%YAML:1.0\n---\nname: \"Feature2D.SIFT\"\nnfeatures: 100\nnOctaveLayers: 4\ncontrastThreshold: 5.0000000000000001e-02\nedgeThreshold: 11\nsigma: 1.7\ndescriptorType: 5\n"); extractor.read(filename); assertEquals(128, extractor.descriptorSize()); assertEquals(100, extractor.getNFeatures()); assertEquals(4, extractor.getNOctaveLayers()); assertEquals(0.05, extractor.getContrastThreshold()); assertEquals(11., extractor.getEdgeThreshold()); assertEquals(1.7, extractor.getSigma()); assertEquals(5, extractor.descriptorType()); } public void testWriteYml() { String filename = OpenCVTestRunner.getTempFileName("yml"); extractor.write(filename); String truth = "%YAML:1.0\n---\nname: \"Feature2D.SIFT\"\nnfeatures: 0\nnOctaveLayers: 3\ncontrastThreshold: 0.040000000000000001\nedgeThreshold: 10.\nsigma: 1.6000000000000001\ndescriptorType: 5\n"; String actual = readFile(filename); actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation assertEquals(truth, actual); } }