#include "perf_precomp.hpp" #define GPU_PERF_TEST_P(fixture, name, params) \ class fixture##_##name : public fixture {\ public:\ fixture##_##name() {}\ protected:\ virtual void __cpu();\ virtual void __gpu();\ virtual void PerfTestBody();\ };\ TEST_P(fixture##_##name, name /*perf*/){ RunPerfTestBody(); if (PERF_RUN_GPU()) __gpu(); else __cpu();}\ INSTANTIATE_TEST_CASE_P(/*none*/, fixture##_##name, params);\ void fixture##_##name::PerfTestBody() #define RUN_CPU(fixture, name)\ void fixture##_##name::__cpu() #define RUN_GPU(fixture, name)\ void fixture##_##name::__gpu() #define NO_CPU(fixture, name)\ void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";} namespace { struct DetectionLess { bool operator()(const cv::gpu::SoftCascade::Detection& a, const cv::gpu::SoftCascade::Detection& b) const { if (a.x != b.x) return a.x < b.x; else if (a.y != b.y) return a.y < b.y; else if (a.w != b.w) return a.w < b.w; else return a.h < b.h; } bool operator()(const cv::SoftCascade::Detection& a, const cv::SoftCascade::Detection& b) const { const cv::Rect& ra = a.rect; const cv::Rect& rb = b.rect; if (ra.x != rb.x) return ra.x < rb.x; else if (ra.y != rb.y) return ra.y < rb.y; else if (ra.width != rb.width) return ra.width < rb.width; else return ra.height < rb.height; } }; cv::Mat sortDetections(cv::gpu::GpuMat& objects) { cv::Mat detections(objects); typedef cv::gpu::SoftCascade::Detection Detection; Detection* begin = (Detection*)(detections.ptr(0)); Detection* end = (Detection*)(detections.ptr(0) + detections.cols); std::sort(begin, end, DetectionLess()); return detections; } } typedef std::tr1::tuple fixture_t; typedef perf::TestBaseWithParam SoftCascadeTest; GPU_PERF_TEST_P(SoftCascadeTest, detect, testing::Combine( testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")))) { } RUN_GPU(SoftCascadeTest, detect) { cv::Mat cpu = readImage (GET_PARAM(1)); ASSERT_FALSE(cpu.empty()); cv::gpu::GpuMat colored(cpu); cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; rois.setTo(1); cv::gpu::transpose(rois, trois); cv::gpu::GpuMat curr = objectBoxes; cascade.detectMultiScale(colored, trois, curr); TEST_CYCLE() { curr = objectBoxes; cascade.detectMultiScale(colored, trois, curr); } SANITY_CHECK(sortDetections(curr)); } RUN_CPU(SoftCascadeTest, detect) { cv::Mat colored = readImage(GET_PARAM(1)); ASSERT_FALSE(colored.empty()); cv::SoftCascade cascade; ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0)))); std::vector rois; typedef cv::SoftCascade::Detection Detection; std::vectorobjects; cascade.detectMultiScale(colored, rois, objects); TEST_CYCLE() { cascade.detectMultiScale(colored, rois, objects); } std::sort(objects.begin(), objects.end(), DetectionLess()); SANITY_CHECK(objects); } static cv::Rect getFromTable(int idx) { static const cv::Rect rois[] = { cv::Rect( 65, 20, 35, 80), cv::Rect( 95, 35, 45, 40), cv::Rect( 45, 35, 45, 40), cv::Rect( 25, 27, 50, 45), cv::Rect(100, 50, 45, 40), cv::Rect( 60, 30, 45, 40), cv::Rect( 40, 55, 50, 40), cv::Rect( 48, 37, 72, 80), cv::Rect( 48, 32, 85, 58), cv::Rect( 48, 0, 32, 27) }; return rois[idx]; } typedef std::tr1::tuple roi_fixture_t; typedef perf::TestBaseWithParam SoftCascadeTestRoi; GPU_PERF_TEST_P(SoftCascadeTestRoi, detectInRoi, testing::Combine( testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), testing::Range(0, 5))) {} RUN_GPU(SoftCascadeTestRoi, detectInRoi) { cv::Mat cpu = readImage (GET_PARAM(1)); ASSERT_FALSE(cpu.empty()); cv::gpu::GpuMat colored(cpu); cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); rois.setTo(0); int nroi = GET_PARAM(2); cv::RNG rng; for (int i = 0; i < nroi; ++i) { cv::Rect r = getFromTable(rng(10)); cv::gpu::GpuMat sub(rois, r); sub.setTo(1); } cv::gpu::GpuMat trois; cv::gpu::transpose(rois, trois); cv::gpu::GpuMat curr = objectBoxes; cascade.detectMultiScale(colored, trois, curr); TEST_CYCLE() { curr = objectBoxes; cascade.detectMultiScale(colored, trois, curr); } SANITY_CHECK(sortDetections(curr)); } NO_CPU(SoftCascadeTestRoi, detectInRoi) GPU_PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi, testing::Combine( testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), testing::Range(0, 10))) {} RUN_GPU(SoftCascadeTestRoi, detectEachRoi) { cv::Mat cpu = readImage (GET_PARAM(1)); ASSERT_FALSE(cpu.empty()); cv::gpu::GpuMat colored(cpu); cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); rois.setTo(0); int idx = GET_PARAM(2); cv::Rect r = getFromTable(idx); cv::gpu::GpuMat sub(rois, r); sub.setTo(1); cv::gpu::GpuMat curr = objectBoxes; cv::gpu::GpuMat trois; cv::gpu::transpose(rois, trois); cascade.detectMultiScale(colored, trois, curr); TEST_CYCLE() { curr = objectBoxes; cascade.detectMultiScale(colored, trois, curr); } SANITY_CHECK(sortDetections(curr)); } NO_CPU(SoftCascadeTestRoi, detectEachRoi) GPU_PERF_TEST_P(SoftCascadeTest, detectOnIntegral, testing::Combine( testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), testing::Values(std::string("cv/cascadeandhog/integrals.xml")))) { } static std::string itoa(long i) { static char s[65]; sprintf(s, "%ld", i); return std::string(s); } RUN_GPU(SoftCascadeTest, detectOnIntegral) { cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ); ASSERT_TRUE(fs.isOpened()); cv::gpu::GpuMat hogluv(121 * 10, 161, CV_32SC1); for (int i = 0; i < 10; ++i) { cv::Mat channel; fs[std::string("channel") + itoa(i)] >> channel; cv::gpu::GpuMat gchannel(hogluv, cv::Rect(0, 121 * i, 161, 121)); gchannel.upload(channel); } cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SoftCascade::Detection), CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; rois.setTo(1); cv::gpu::transpose(rois, trois); cv::gpu::GpuMat curr = objectBoxes; cascade.detectMultiScale(hogluv, trois, curr); TEST_CYCLE() { curr = objectBoxes; cascade.detectMultiScale(hogluv, trois, curr); } SANITY_CHECK(sortDetections(curr)); } NO_CPU(SoftCascadeTest, detectOnIntegral)