/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/videostab/global_motion.hpp" #include "opencv2/videostab/ring_buffer.hpp" using namespace std; namespace cv { namespace videostab { // does isotropic normalization static Mat normalizePoints(int npoints, Point2f *points) { float cx = 0.f, cy = 0.f; for (int i = 0; i < npoints; ++i) { cx += points[i].x; cy += points[i].y; } cx /= npoints; cy /= npoints; float d = 0.f; for (int i = 0; i < npoints; ++i) { points[i].x -= cx; points[i].y -= cy; d += sqrt(sqr(points[i].x) + sqr(points[i].y)); } d /= npoints; float s = sqrt(2.f) / d; for (int i = 0; i < npoints; ++i) { points[i].x *= s; points[i].y *= s; } Mat_ T = Mat::eye(3, 3, CV_32F); T(0,0) = T(1,1) = s; T(0,2) = -cx*s; T(1,2) = -cy*s; return T; } static Mat estimateGlobMotionLeastSquaresTranslation( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ M = Mat::eye(3, 3, CV_32F); for (int i = 0; i < npoints; ++i) { M(0,2) += points1[i].x - points0[i].x; M(1,2) += points1[i].y - points0[i].y; } M(0,2) /= npoints; M(1,2) /= npoints; if (rmse) { *rmse = 0; for (int i = 0; i < npoints; ++i) *rmse += sqr(points1[i].x - points0[i].x - M(0,2)) + sqr(points1[i].y - points0[i].y - M(1,2)); *rmse = sqrt(*rmse / npoints); } return M; } static Mat estimateGlobMotionLeastSquaresTranslationAndScale( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ T0 = normalizePoints(npoints, points0); Mat_ T1 = normalizePoints(npoints, points1); Mat_ A(2*npoints, 3), b(2*npoints, 1); float *a0, *a1; Point2f p0, p1; for (int i = 0; i < npoints; ++i) { a0 = A[2*i]; a1 = A[2*i+1]; p0 = points0[i]; p1 = points1[i]; a0[0] = p0.x; a0[1] = 1; a0[2] = 0; a1[0] = p0.y; a1[1] = 0; a1[2] = 1; b(2*i,0) = p1.x; b(2*i+1,0) = p1.y; } Mat_ sol; solve(A, b, sol, DECOMP_SVD); if (rmse) *rmse = static_cast(norm(A*sol, b, NORM_L2) / sqrt(static_cast(npoints))); Mat_ M = Mat::eye(3, 3, CV_32F); M(0,0) = M(1,1) = sol(0,0); M(0,2) = sol(1,0); M(1,2) = sol(2,0); return T1.inv() * M * T0; } static Mat estimateGlobMotionLeastSquaresLinearSimilarity( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ T0 = normalizePoints(npoints, points0); Mat_ T1 = normalizePoints(npoints, points1); Mat_ A(2*npoints, 4), b(2*npoints, 1); float *a0, *a1; Point2f p0, p1; for (int i = 0; i < npoints; ++i) { a0 = A[2*i]; a1 = A[2*i+1]; p0 = points0[i]; p1 = points1[i]; a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = 0; a1[0] = p0.y; a1[1] = -p0.x; a1[2] = 0; a1[3] = 1; b(2*i,0) = p1.x; b(2*i+1,0) = p1.y; } Mat_ sol; solve(A, b, sol, DECOMP_SVD); if (rmse) *rmse = static_cast(norm(A*sol, b, NORM_L2) / sqrt(static_cast(npoints))); Mat_ M = Mat::eye(3, 3, CV_32F); M(0,0) = M(1,1) = sol(0,0); M(0,1) = sol(1,0); M(1,0) = -sol(1,0); M(0,2) = sol(2,0); M(1,2) = sol(3,0); return T1.inv() * M * T0; } static Mat estimateGlobMotionLeastSquaresAffine( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ T0 = normalizePoints(npoints, points0); Mat_ T1 = normalizePoints(npoints, points1); Mat_ A(2*npoints, 6), b(2*npoints, 1); float *a0, *a1; Point2f p0, p1; for (int i = 0; i < npoints; ++i) { a0 = A[2*i]; a1 = A[2*i+1]; p0 = points0[i]; p1 = points1[i]; a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = a0[4] = a0[5] = 0; a1[0] = a1[1] = a1[2] = 0; a1[3] = p0.x; a1[4] = p0.y; a1[5] = 1; b(2*i,0) = p1.x; b(2*i+1,0) = p1.y; } Mat_ sol; solve(A, b, sol, DECOMP_SVD); if (rmse) *rmse = static_cast(norm(A*sol, b, NORM_L2) / sqrt(static_cast(npoints))); Mat_ M = Mat::eye(3, 3, CV_32F); for (int i = 0, k = 0; i < 2; ++i) for (int j = 0; j < 3; ++j, ++k) M(i,j) = sol(k,0); return T1.inv() * M * T0; } Mat estimateGlobalMotionLeastSquares( int npoints, Point2f *points0, Point2f *points1, int model, float *rmse) { CV_Assert(model <= MM_AFFINE); typedef Mat (*Impl)(int, Point2f*, Point2f*, float*); static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation, estimateGlobMotionLeastSquaresTranslationAndScale, estimateGlobMotionLeastSquaresLinearSimilarity, estimateGlobMotionLeastSquaresAffine }; return impls[model](npoints, points0, points1, rmse); } Mat estimateGlobalMotionRobust( const vector &points0, const vector &points1, int model, const RansacParams ¶ms, float *rmse, int *ninliers) { CV_Assert(model <= MM_AFFINE); CV_Assert(points0.size() == points1.size()); const int npoints = static_cast(points0.size()); const int niters = static_cast(ceil(log(1 - params.prob) / log(1 - pow(1 - params.eps, params.size)))); // current hypothesis vector indices(params.size); vector subset0(params.size); vector subset1(params.size); // best hypothesis vector subset0best(params.size); vector subset1best(params.size); Mat_ bestM; int ninliersMax = -1; RNG rng(0); Point2f p0, p1; float x, y; for (int iter = 0; iter < niters; ++iter) { for (int i = 0; i < params.size; ++i) { bool ok = false; while (!ok) { ok = true; indices[i] = static_cast(rng) % npoints; for (int j = 0; j < i; ++j) if (indices[i] == indices[j]) { ok = false; break; } } } for (int i = 0; i < params.size; ++i) { subset0[i] = points0[indices[i]]; subset1[i] = points1[indices[i]]; } Mat_ M = estimateGlobalMotionLeastSquares( params.size, &subset0[0], &subset1[0], model, 0); int ninliers = 0; for (int i = 0; i < npoints; ++i) { p0 = points0[i]; p1 = points1[i]; x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2); y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2); if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh) ninliers++; } if (ninliers >= ninliersMax) { bestM = M; ninliersMax = ninliers; subset0best.swap(subset0); subset1best.swap(subset1); } } if (ninliersMax < params.size) // compute RMSE bestM = estimateGlobalMotionLeastSquares( params.size, &subset0best[0], &subset1best[0], model, rmse); else { subset0.resize(ninliersMax); subset1.resize(ninliersMax); for (int i = 0, j = 0; i < npoints; ++i) { p0 = points0[i]; p1 = points1[i]; x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2); y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2); if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh) { subset0[j] = p0; subset1[j] = p1; j++; } } bestM = estimateGlobalMotionLeastSquares( ninliersMax, &subset0[0], &subset1[0], model, rmse); } if (ninliers) *ninliers = ninliersMax; return bestM; } FromFileMotionReader::FromFileMotionReader(const string &path) { file_.open(path.c_str()); CV_Assert(file_.is_open()); } Mat FromFileMotionReader::estimate(const Mat &/*frame0*/, const Mat &/*frame1*/, bool *ok) { Mat_ M(3, 3); bool ok_; file_ >> M(0,0) >> M(0,1) >> M(0,2) >> M(1,0) >> M(1,1) >> M(1,2) >> M(2,0) >> M(2,1) >> M(2,2) >> ok_; if (ok) *ok = ok_; return M; } ToFileMotionWriter::ToFileMotionWriter(const string &path, Ptr estimator) { file_.open(path.c_str()); CV_Assert(file_.is_open()); estimator_ = estimator; } Mat ToFileMotionWriter::estimate(const Mat &frame0, const Mat &frame1, bool *ok) { bool ok_; Mat_ M = estimator_->estimate(frame0, frame1, &ok_); file_ << M(0,0) << " " << M(0,1) << " " << M(0,2) << " " << M(1,0) << " " << M(1,1) << " " << M(1,2) << " " << M(2,0) << " " << M(2,1) << " " << M(2,2) << " " << ok_ << endl; if (ok) *ok = ok_; return M; } PyrLkRobustMotionEstimator::PyrLkRobustMotionEstimator(MotionModel model) { setDetector(new GoodFeaturesToTrackDetector()); setOptFlowEstimator(new SparsePyrLkOptFlowEstimator()); setMotionModel(model); RansacParams ransac = RansacParams::default2dMotion(model); ransac.size *= 2; // we use more points than needed, but result looks better setRansacParams(ransac); setMaxRmse(0.5f); setMinInlierRatio(0.1f); setGridSize(Size(0,0)); } Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool *ok) { detector_->detect(frame0, keypointsPrev_); // add extra keypoints if (gridSize_.width > 0 && gridSize_.height > 0) { float dx = (float)frame0.cols / (gridSize_.width + 1); float dy = (float)frame0.rows / (gridSize_.height + 1); for (int x = 0; x < gridSize_.width; ++x) for (int y = 0; y < gridSize_.height; ++y) keypointsPrev_.push_back(KeyPoint((x+1)*dx, (y+1)*dy, 0.f)); } // draw keypoints /*Mat img; drawKeypoints(frame0, keypointsPrev_, img); imshow("frame0_keypoints", img); waitKey(3);*/ pointsPrev_.resize(keypointsPrev_.size()); for (size_t i = 0; i < keypointsPrev_.size(); ++i) pointsPrev_[i] = keypointsPrev_[i].pt; optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray()); size_t npoints = points_.size(); pointsPrevGood_.clear(); pointsPrevGood_.reserve(npoints); pointsGood_.clear(); pointsGood_.reserve(npoints); for (size_t i = 0; i < npoints; ++i) { if (status_[i]) { pointsPrevGood_.push_back(pointsPrev_[i]); pointsGood_.push_back(points_[i]); } } float rmse; int ninliers; Mat_ M; if (motionModel_ != MM_HOMOGRAPHY) M = estimateGlobalMotionRobust( pointsPrevGood_, pointsGood_, motionModel_, ransacParams_, &rmse, &ninliers); else { vector mask; M = findHomography(pointsPrevGood_, pointsGood_, mask, CV_RANSAC, ransacParams_.thresh); ninliers = 0; rmse = 0; Point2f p0, p1; float x, y, z; for (size_t i = 0; i < pointsGood_.size(); ++i) { if (mask[i]) { p0 = pointsPrevGood_[i]; p1 = pointsGood_[i]; x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2); y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2); z = M(2,0)*p0.x + M(2,1)*p0.y + M(2,2); x /= z; y /= z; rmse += sqr(x - p1.x) + sqr(y - p1.y); ninliers++; } } rmse = sqrt(rmse / static_cast(ninliers)); } if (ok) *ok = true; if (rmse > maxRmse_ || static_cast(ninliers) / pointsGood_.size() < minInlierRatio_) { M = Mat::eye(3, 3, CV_32F); if (ok) *ok = false; } return M; } Mat getMotion(int from, int to, const vector &motions) { Mat M = Mat::eye(3, 3, CV_32F); if (to > from) { for (int i = from; i < to; ++i) M = at(i, motions) * M; } else if (from > to) { for (int i = to; i < from; ++i) M = at(i, motions) * M; M = M.inv(); } return M; } } // namespace videostab } // namespace cv