/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan, jlyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Zailong Wu, bullet@yeah.net // Peng Xiao, pengxiao@outlook.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; static std::vector scalarToVector(const cv::Scalar & sc, int depth, int ocn, int cn) { CV_Assert(ocn == cn || (ocn == 4 && cn == 3)); static const int sizeMap[] = { sizeof(uchar), sizeof(char), sizeof(ushort), sizeof(short), sizeof(int), sizeof(float), sizeof(double) }; int elemSize1 = sizeMap[depth]; int bufSize = elemSize1 * ocn; std::vector _buf(bufSize); uchar * buf = &_buf[0]; scalarToRawData(sc, buf, CV_MAKE_TYPE(depth, cn)); memset(buf + elemSize1 * cn, 0, (ocn - cn) * elemSize1); return _buf; } ////////////////////////////////////////////////////////////////////////////// /////////////// add subtract multiply divide min max ///////////////////////// ////////////////////////////////////////////////////////////////////////////// enum { ADD = 0, SUB, MUL, DIV, ABS, ABS_DIFF, MIN, MAX }; static void arithmetic_run_generic(const oclMat &src1, const oclMat &src2, const Scalar & scalar, const oclMat & mask, oclMat &dst, int op_type, bool use_scalar = false) { Context *clCxt = src1.clCxt; bool hasDouble = clCxt->supportsFeature(FEATURE_CL_DOUBLE); if (!hasDouble && (src1.depth() == CV_64F || src2.depth() == CV_64F || dst.depth() == CV_64F)) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(src2.empty() || (!src2.empty() && src1.type() == src2.type() && src1.size() == src2.size())); CV_Assert(mask.empty() || (!mask.empty() && mask.type() == CV_8UC1 && mask.size() == src1.size())); CV_Assert(op_type >= ADD && op_type <= MAX); dst.create(src1.size(), src1.type()); int oclChannels = src1.oclchannels(), depth = src1.depth(); int src1step1 = src1.step / src1.elemSize(), src1offset1 = src1.offset / src1.elemSize(); int src2step1 = src2.step / src2.elemSize(), src2offset1 = src2.offset / src2.elemSize(); int maskstep1 = mask.step, maskoffset1 = mask.offset / mask.elemSize(); int dststep1 = dst.step / dst.elemSize(), dstoffset1 = dst.offset / dst.elemSize(); std::vector m; #ifdef ANDROID size_t localThreads[3] = { 16, 10, 1 }; #else size_t localThreads[3] = { 16, 16, 1 }; #endif size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; std::string kernelName = "arithm_binary_op"; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const WTypeMap[] = { "short", "short", "int", "int", "int", "float", "double" }; const char * const funcMap[] = { "FUNC_ADD", "FUNC_SUB", "FUNC_MUL", "FUNC_DIV", "FUNC_ABS", "FUNC_ABS_DIFF", "FUNC_MIN", "FUNC_MAX" }; const char * const channelMap[] = { "", "", "2", "4", "4" }; bool haveScalar = use_scalar || src2.empty(); int WDepth = depth; if (haveScalar) WDepth = hasDouble && WDepth == CV_64F ? CV_64F : CV_32F; if (op_type == DIV) WDepth = hasDouble ? CV_64F : CV_32F; else if (op_type == MUL) WDepth = hasDouble && (depth == CV_32S || depth == CV_64F) ? CV_64F : CV_32F; std::string buildOptions = format("-D T=%s%s -D WT=%s%s -D convertToT=convert_%s%s%s -D %s " "-D convertToWT=convert_%s%s", typeMap[depth], channelMap[oclChannels], WTypeMap[WDepth], channelMap[oclChannels], typeMap[depth], channelMap[oclChannels], (depth >= CV_32F ? "" : (depth == CV_32S ? "_rte" : "_sat_rte")), funcMap[op_type], WTypeMap[WDepth], channelMap[oclChannels]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1offset1 )); if (!src2.empty()) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2offset1 )); kernelName += "_mat"; if (haveScalar) buildOptions += " -D HAVE_SCALAR"; } if (haveScalar) { const int WDepthMap[] = { CV_16S, CV_16S, CV_32S, CV_32S, CV_32S, CV_32F, CV_64F }; m = scalarToVector(scalar, WDepthMap[WDepth], oclChannels, src1.channels()); args.push_back( std::make_pair( m.size(), (void *)&m[0])); kernelName += "_scalar"; } if (!mask.empty()) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&maskstep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&maskoffset1 )); kernelName += "_mask"; } args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dststep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); openCLExecuteKernel(clCxt, mask.empty() ? (!src2.empty() ? &arithm_add : &arithm_add_scalar) : (!src2.empty() ? &arithm_add_mask : &arithm_add_scalar_mask), kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { arithmetic_run_generic(src1, src2, Scalar(), mask, dst, ADD); } void cv::ocl::add(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { arithmetic_run_generic(src1, oclMat(), src2, mask, dst, ADD); } void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { arithmetic_run_generic(src1, src2, Scalar(), mask, dst, SUB); } void cv::ocl::subtract(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { arithmetic_run_generic(src1, oclMat(), src2, mask, dst, SUB); } void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) { const bool use_scalar = !(std::abs(scalar - 1.0) < std::numeric_limits::epsilon()); arithmetic_run_generic(src1, src2, Scalar::all(scalar), oclMat(), dst, MUL, use_scalar); } void cv::ocl::multiply(double scalar, const oclMat &src, oclMat &dst) { arithmetic_run_generic(src, oclMat(), Scalar::all(scalar), oclMat(), dst, MUL); } void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) { const bool use_scalar = !(std::abs(scalar - 1.0) < std::numeric_limits::epsilon()); arithmetic_run_generic(src1, src2, Scalar::all(scalar), oclMat(), dst, DIV, use_scalar); } void cv::ocl::divide(double scalar, const oclMat &src, oclMat &dst) { arithmetic_run_generic(src, oclMat(), Scalar::all(scalar), oclMat(), dst, DIV); } void cv::ocl::min(const oclMat &src1, const oclMat &src2, oclMat &dst) { arithmetic_run_generic(src1, src2, Scalar::all(0), oclMat(), dst, MIN); } void cv::ocl::max(const oclMat &src1, const oclMat &src2, oclMat &dst) { arithmetic_run_generic(src1, src2, Scalar::all(0), oclMat(), dst, MAX); } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////Abs, Absdiff //////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::abs(const oclMat &src, oclMat &dst) { // explicitly uses use_scalar (even if zero) so that the correct kernel is used arithmetic_run_generic(src, oclMat(), Scalar(), oclMat(), dst, ABS, true); } void cv::ocl::absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst) { arithmetic_run_generic(src1, src2, Scalar(), oclMat(), dst, ABS_DIFF); } void cv::ocl::absdiff(const oclMat &src1, const Scalar &src2, oclMat &dst) { arithmetic_run_generic(src1, oclMat(), src2, oclMat(), dst, ABS_DIFF); } ////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// compare /////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void compare_run(const oclMat &src1, const oclMat &src2, oclMat &dst, int cmpOp, String kernelName, const cv::ocl::ProgramEntry* source) { dst.create(src1.size(), CV_8UC1); int depth = src1.depth(); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; int src1step1 = src1.step1(), src1offset1 = src1.offset / src1.elemSize1(); int src2step1 = src2.step1(), src2offset1 = src2.offset / src2.elemSize1(); int dststep1 = dst.step1(), dstoffset1 = dst.offset / dst.elemSize1(); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * operationMap[] = { "==", ">", ">=", "<", "<=", "!=" }; std::string buildOptions = format("-D T=%s -D Operation=%s", typeMap[depth], operationMap[cmpOp]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1offset1 )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2offset1 )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dststep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); openCLExecuteKernel(src1.clCxt, source, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::compare(const oclMat &src1, const oclMat &src2, oclMat &dst , int cmpOp) { if (!src1.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src1.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(src1.type() == src2.type() && src1.channels() == 1); CV_Assert(cmpOp >= CMP_EQ && cmpOp <= CMP_NE); compare_run(src1, src2, dst, cmpOp, "arithm_compare", &arithm_compare); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// sum ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// enum { SUM = 0, ABS_SUM, SQR_SUM }; static void arithmetic_sum_buffer_run(const oclMat &src, cl_mem &dst, int groupnum, int type, int ddepth) { int ochannels = src.oclchannels(); int all_cols = src.step / src.elemSize(); int pre_cols = (src.offset % src.step) / src.elemSize(); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / src.elemSize() - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / src.elemSize(); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const funcMap[] = { "FUNC_SUM", "FUNC_ABS_SUM", "FUNC_SQR_SUM" }; const char * const channelMap[] = { " ", " ", "2", "4", "4" }; String buildOptions = format("-D srcT=%s%s -D dstT=%s%s -D convertToDstT=convert_%s%s -D %s", typeMap[src.depth()], channelMap[ochannels], typeMap[ddepth], channelMap[ochannels], typeMap[ddepth], channelMap[ochannels], funcMap[type]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); size_t globalThreads[3] = { groupnum * 256, 1, 1 }; #ifdef ANDROID openCLExecuteKernel(src.clCxt, &arithm_sum, "arithm_op_sum", globalThreads, NULL, args, -1, -1, buildOptions.c_str()); #else size_t localThreads[3] = { 256, 1, 1 }; openCLExecuteKernel(src.clCxt, &arithm_sum, "arithm_op_sum", globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); #endif } template Scalar arithmetic_sum(const oclMat &src, int type, int ddepth) { CV_Assert(src.step % src.elemSize() == 0); size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits; CV_Assert(groupnum != 0); int dbsize = groupnum * src.oclchannels(); Context *clCxt = src.clCxt; AutoBuffer _buf(dbsize); T *p = (T*)_buf; memset(p, 0, dbsize * sizeof(T)); cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize * sizeof(T)); arithmetic_sum_buffer_run(src, dstBuffer, groupnum, type, ddepth); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize * sizeof(T)); openCLFree(dstBuffer); Scalar s = Scalar::all(0.0); for (int i = 0; i < dbsize;) for (int j = 0; j < src.oclchannels(); j++, i++) s.val[j] += p[i]; return s; } typedef Scalar (*sumFunc)(const oclMat &src, int type, int ddepth); Scalar cv::ocl::sum(const oclMat &src) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return Scalar::all(0); } static sumFunc functab[3] = { arithmetic_sum, arithmetic_sum, arithmetic_sum }; int ddepth = std::max(src.depth(), CV_32S); sumFunc func = functab[ddepth - CV_32S]; return func(src, SUM, ddepth); } Scalar cv::ocl::absSum(const oclMat &src) { int sdepth = src.depth(); if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && sdepth == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return cv::Scalar::all(0); } if (sdepth == CV_8U || sdepth == CV_16U) return sum(src); static sumFunc functab[3] = { arithmetic_sum, arithmetic_sum, arithmetic_sum }; int ddepth = std::max(sdepth, CV_32S); sumFunc func = functab[ddepth - CV_32S]; return func(src, ABS_SUM, ddepth); } Scalar cv::ocl::sqrSum(const oclMat &src) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return cv::Scalar::all(0); } static sumFunc functab[3] = { arithmetic_sum, arithmetic_sum, arithmetic_sum }; int ddepth = std::max(src.depth(), CV_32S); sumFunc func = functab[ddepth - CV_32S]; return func(src, SQR_SUM, ddepth); } ////////////////////////////////////////////////////////////////////////////// //////////////////////////////// meanStdDev ////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::meanStdDev(const oclMat &src, Scalar &mean, Scalar &stddev) { if (src.depth() == CV_64F && !src.clCxt->supportsFeature(FEATURE_CL_DOUBLE)) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } double total = 1.0 / src.size().area(); mean = sum(src); stddev = sqrSum(src); for (int i = 0; i < 4; ++i) { mean[i] *= total; stddev[i] = std::sqrt(std::max(stddev[i] * total - mean.val[i] * mean.val[i] , 0.)); } } ////////////////////////////////////////////////////////////////////////////// //////////////////////////////////// minMax ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// template static void arithmetic_minMax_run(const oclMat &src, const oclMat & mask, cl_mem &dst, int groupnum, String kernelName) { int all_cols = src.step / src.elemSize(); int pre_cols = (src.offset % src.step) / src.elemSize(); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / src.elemSize() - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows; int offset = src.offset / src.elemSize(); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { " ", " ", "2", "4", "4" }; std::ostringstream stream; stream << "-D T=" << typeMap[src.depth()] << channelMap[src.channels()]; if (std::numeric_limits::is_integer) { stream << " -D MAX_VAL=" << (WT)std::numeric_limits::max(); stream << " -D MIN_VAL=" << (WT)std::numeric_limits::min(); } else stream << " -D DEPTH_" << src.depth(); std::string buildOptions = stream.str(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); int minvalid_cols = 0, moffset = 0; if (!mask.empty()) { int mall_cols = mask.step / mask.elemSize(); int mpre_cols = (mask.offset % mask.step) / mask.elemSize(); int msec_cols = mall_cols - (mask.offset % mask.step + mask.cols * mask.elemSize() - 1) / mask.elemSize() - 1; minvalid_cols = mpre_cols + msec_cols; moffset = mask.offset / mask.elemSize(); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&moffset )); kernelName += "_mask"; } size_t globalThreads[3] = {groupnum * 256, 1, 1}; size_t localThreads[3] = {256, 1, 1}; // kernel use fixed grid size, replace lt on NULL is imposible without kernel changes openCLExecuteKernel(src.clCxt, &arithm_minMax, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } template void arithmetic_minMax(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask) { size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits; CV_Assert(groupnum != 0); int dbsize = groupnum * 2 * src.elemSize(); oclMat buf; ensureSizeIsEnough(1, dbsize, CV_8UC1, buf); cl_mem buf_data = reinterpret_cast(buf.data); arithmetic_minMax_run(src, mask, buf_data, groupnum, "arithm_op_minMax"); Mat matbuf = Mat(buf); T *p = matbuf.ptr(); if (minVal != NULL) { *minVal = std::numeric_limits::max(); for (int i = 0, end = src.oclchannels() * (int)groupnum; i < end; i++) *minVal = *minVal < p[i] ? *minVal : p[i]; } if (maxVal != NULL) { *maxVal = -std::numeric_limits::max(); for (int i = src.oclchannels() * (int)groupnum, end = i << 1; i < end; i++) *maxVal = *maxVal > p[i] ? *maxVal : p[i]; } } typedef void (*minMaxFunc)(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask); void cv::ocl::minMax(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask) { CV_Assert(src.channels() == 1); CV_Assert(src.size() == mask.size() || mask.empty()); CV_Assert(src.step % src.elemSize() == 0); if (minVal == NULL && maxVal == NULL) return; if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } static minMaxFunc functab[] = { arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, 0 }; minMaxFunc func = functab[src.depth()]; CV_Assert(func != 0); func(src, minVal, maxVal, mask); } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// norm ///////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// double cv::ocl::norm(const oclMat &src1, int normType) { CV_Assert((normType & NORM_RELATIVE) == 0); return norm(src1, oclMat(), normType); } static void arithm_absdiff_nonsaturate_run(const oclMat & src1, const oclMat & src2, oclMat & diff, int ntype) { Context *clCxt = src1.clCxt; if (!clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src1.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(src1.step % src1.elemSize() == 0 && (src2.empty() || src2.step % src2.elemSize() == 0)); if (src2.empty() && (src1.depth() == CV_8U || src1.depth() == CV_16U)) { src1.convertTo(diff, CV_32S); return; } int ddepth = std::max(src1.depth(), CV_32S); if (ntype == NORM_L2) ddepth = std::max(CV_32F, ddepth); diff.create(src1.size(), CV_MAKE_TYPE(ddepth, src1.channels())); CV_Assert(diff.step % diff.elemSize() == 0); int oclChannels = src1.oclchannels(), sdepth = src1.depth(); int src1step1 = src1.step / src1.elemSize(), src1offset1 = src1.offset / src1.elemSize(); int src2step1 = src2.step / src2.elemSize(), src2offset1 = src2.offset / src2.elemSize(); int diffstep1 = diff.step / diff.elemSize(), diffoffset1 = diff.offset / diff.elemSize(); String kernelName = "arithm_absdiff_nonsaturate"; #ifdef ANDROID size_t localThreads[3] = { 16, 10, 1 }; #else size_t localThreads[3] = { 16, 16, 1 }; #endif size_t globalThreads[3] = { diff.cols, diff.rows, 1 }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { "", "", "2", "4", "4" }; std::string buildOptions = format("-D srcT=%s%s -D dstT=%s%s -D convertToDstT=convert_%s%s", typeMap[sdepth], channelMap[oclChannels], typeMap[ddepth], channelMap[oclChannels], typeMap[ddepth], channelMap[oclChannels]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1offset1 )); if (!src2.empty()) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2offset1 )); kernelName += "_binary"; buildOptions += " -D BINARY"; } args.push_back( std::make_pair( sizeof(cl_mem), (void *)&diff.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&diffstep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&diffoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); openCLExecuteKernel(clCxt, &arithm_absdiff_nonsaturate, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } double cv::ocl::norm(const oclMat &src1, const oclMat &src2, int normType) { if (!src1.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src1.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return -1; } CV_Assert(src2.empty() || (src1.type() == src2.type() && src1.size() == src2.size())); bool isRelative = (normType & NORM_RELATIVE) != 0; normType &= NORM_TYPE_MASK; CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); Scalar s; int cn = src1.channels(); double r = 0; oclMat diff; arithm_absdiff_nonsaturate_run(src1, src2, diff, normType); switch (normType) { case NORM_INF: diff = diff.reshape(1); minMax(diff, NULL, &r); break; case NORM_L1: s = sum(diff); for (int i = 0; i < cn; ++i) r += s[i]; break; case NORM_L2: s = sqrSum(diff); for (int i = 0; i < cn; ++i) r += s[i]; r = std::sqrt(r); break; } if (isRelative) r = r / (norm(src2, normType) + DBL_EPSILON); return r; } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// flip ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// enum { FLIP_COLS = 1 << 0, FLIP_ROWS = 1 << 1, FLIP_BOTH = FLIP_ROWS | FLIP_COLS }; static void arithmetic_flip_run(const oclMat &src, oclMat &dst, String kernelName, int flipType) { int cols = dst.cols, rows = dst.rows; if ((cols == 1 && flipType == FLIP_COLS) || (rows == 1 && flipType == FLIP_ROWS) || (rows == 1 && cols == 1 && flipType == FLIP_BOTH)) { src.copyTo(dst); return; } cols = flipType == FLIP_COLS ? divUp(cols, 2) : cols; rows = flipType & FLIP_ROWS ? divUp(rows, 2) : rows; const char * const channelMap[] = { "", "", "2", "4", "4" }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; std::string buildOptions = format("-D T=%s%s", typeMap[dst.depth()], channelMap[dst.oclchannels()]); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { cols, rows, 1 }; int elemSize = src.elemSize(); int src_step = src.step / elemSize, src_offset = src.offset / elemSize; int dst_step = dst.step / elemSize, dst_offset = dst.offset / elemSize; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); openCLExecuteKernel(src.clCxt, &arithm_flip, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::flip(const oclMat &src, oclMat &dst, int flipCode) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } dst.create(src.size(), src.type()); if (flipCode == 0) arithmetic_flip_run(src, dst, "arithm_flip_rows", FLIP_ROWS); else if (flipCode > 0) arithmetic_flip_run(src, dst, "arithm_flip_cols", FLIP_COLS); else arithmetic_flip_run(src, dst, "arithm_flip_rows_cols", FLIP_BOTH); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// LUT ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_lut_run(const oclMat &src, const oclMat &lut, oclMat &dst, String kernelName) { int sdepth = src.depth(); int src_step1 = src.step1(), dst_step1 = dst.step1(); int src_offset1 = src.offset / src.elemSize1(), dst_offset1 = dst.offset / dst.elemSize1(); int lut_offset1 = lut.offset / lut.elemSize1() + (sdepth == CV_8U ? 0 : 128) * lut.channels(); int cols1 = src.cols * src.oclchannels(); size_t localSize[] = { 16, 16, 1 }; size_t globalSize[] = { lut.channels() == 1 ? cols1 : src.cols, src.rows, 1 }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; std::string buildOptions = format("-D srcT=%s -D dstT=%s", typeMap[sdepth], typeMap[dst.depth()]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols1)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut_offset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(src.clCxt, &arithm_LUT, kernelName, globalSize, localSize, args, lut.oclchannels(), -1, buildOptions.c_str()); } void cv::ocl::LUT(const oclMat &src, const oclMat &lut, oclMat &dst) { if (!lut.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && lut.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } int cn = src.channels(), depth = src.depth(); CV_Assert(depth == CV_8U || depth == CV_8S); CV_Assert(lut.channels() == 1 || lut.channels() == src.channels()); CV_Assert(lut.rows == 1 && lut.cols == 256); dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn)); arithmetic_lut_run(src, lut, dst, "LUT"); } ////////////////////////////////////////////////////////////////////////////// //////////////////////////////// exp log ///////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_exp_log_run(const oclMat &src, oclMat &dst, String kernelName, const cv::ocl::ProgramEntry* source) { Context *clCxt = src.clCxt; if (!clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert( src.depth() == CV_32F || src.depth() == CV_64F); dst.create(src.size(), src.type()); int ddepth = dst.depth(); int cols1 = src.cols * src.oclchannels(); int srcoffset1 = src.offset / src.elemSize1(), dstoffset1 = dst.offset / dst.elemSize1(); int srcstep1 = src.step1(), dststep1 = dst.step1(); #ifdef ANDROID size_t localThreads[3] = { 64, 2, 1 }; #else size_t localThreads[3] = { 64, 4, 1 }; #endif size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; std::string buildOptions = format("-D srcT=%s", ddepth == CV_32F ? "float" : "double"); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcstep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dststep1 )); openCLExecuteKernel(clCxt, source, kernelName, globalThreads, localThreads, args, src.oclchannels(), -1, buildOptions.c_str()); } void cv::ocl::exp(const oclMat &src, oclMat &dst) { arithmetic_exp_log_run(src, dst, "arithm_exp", &arithm_exp); } void cv::ocl::log(const oclMat &src, oclMat &dst) { arithmetic_exp_log_run(src, dst, "arithm_log", &arithm_log); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////// magnitude phase /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_magnitude_phase_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName) { int depth = dst.depth(); #ifdef ANDROID size_t localThreads[3] = { 64, 2, 1 }; #else size_t localThreads[3] = { 64, 4, 1 }; #endif size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; int src1_step = src1.step / src1.elemSize(), src1_offset = src1.offset / src1.elemSize(); int src2_step = src2.step / src2.elemSize(), src2_offset = src2.offset / src2.elemSize(); int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols )); const char * const channelMap[] = { "", "", "2", "4", "4" }; std::string buildOptions = format("-D T=%s%s", depth == CV_32F ? "float" : "double", channelMap[dst.channels()]); openCLExecuteKernel(src1.clCxt, &arithm_magnitude, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::magnitude(const oclMat &src1, const oclMat &src2, oclMat &dst) { if (!src1.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src1.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(src1.type() == src2.type() && src1.size() == src2.size() && (src1.depth() == CV_32F || src1.depth() == CV_64F)); dst.create(src1.size(), src1.type()); arithmetic_magnitude_phase_run(src1, src2, dst, "arithm_magnitude"); } static void arithmetic_phase_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const cv::ocl::ProgramEntry* source) { int depth = dst.depth(), cols1 = src1.cols * src1.oclchannels(); int src1step1 = src1.step / src1.elemSize1(), src1offset1 = src1.offset / src1.elemSize1(); int src2step1 = src2.step / src2.elemSize1(), src2offset1 = src2.offset / src2.elemSize1(); int dststep1 = dst.step / dst.elemSize1(), dstoffset1 = dst.offset / dst.elemSize1(); #ifdef ANDROID size_t localThreads[3] = { 64, 2, 1 }; #else size_t localThreads[3] = { 64, 4, 1 }; #endif size_t globalThreads[3] = { cols1, dst.rows, 1 }; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1offset1 )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2offset1 )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dststep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); openCLExecuteKernel(src1.clCxt, source, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::phase(const oclMat &x, const oclMat &y, oclMat &Angle, bool angleInDegrees) { if (!x.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && x.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(x.type() == y.type() && x.size() == y.size() && (x.depth() == CV_32F || x.depth() == CV_64F)); CV_Assert(x.step % x.elemSize() == 0 && y.step % y.elemSize() == 0); Angle.create(x.size(), x.type()); arithmetic_phase_run(x, y, Angle, angleInDegrees ? "arithm_phase_indegrees" : "arithm_phase_inradians", &arithm_phase); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// cartToPolar /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_cartToPolar_run(const oclMat &src1, const oclMat &src2, oclMat &dst_mag, oclMat &dst_cart, String kernelName, bool angleInDegrees) { int channels = src1.oclchannels(); int depth = src1.depth(); int cols = src1.cols * channels; #ifdef ANDROID size_t localThreads[3] = { 64, 2, 1 }; #else size_t localThreads[3] = { 64, 4, 1 }; #endif size_t globalThreads[3] = { cols, src1.rows, 1 }; int src1_step = src1.step / src1.elemSize1(), src1_offset = src1.offset / src1.elemSize1(); int src2_step = src2.step / src2.elemSize1(), src2_offset = src2.offset / src2.elemSize1(); int dst_mag_step = dst_mag.step / dst_mag.elemSize1(), dst_mag_offset = dst_mag.offset / dst_mag.elemSize1(); int dst_cart_step = dst_cart.step / dst_cart.elemSize1(), dst_cart_offset = dst_cart.offset / dst_cart.elemSize1(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst_mag.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_mag_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_mag_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst_cart.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_cart_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_cart_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); openCLExecuteKernel(src1.clCxt, &arithm_cartToPolar, kernelName, globalThreads, localThreads, args, -1, depth, angleInDegrees ? "-D DEGREE" : "-D RADIAN"); } void cv::ocl::cartToPolar(const oclMat &x, const oclMat &y, oclMat &mag, oclMat &angle, bool angleInDegrees) { if (!x.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && x.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(x.type() == y.type() && x.size() == y.size() && (x.depth() == CV_32F || x.depth() == CV_64F)); mag.create(x.size(), x.type()); angle.create(x.size(), x.type()); arithmetic_cartToPolar_run(x, y, mag, angle, "arithm_cartToPolar", angleInDegrees); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// polarToCart /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_ptc_run(const oclMat &src1, const oclMat &src2, oclMat &dst1, oclMat &dst2, bool angleInDegrees, String kernelName) { int channels = src2.oclchannels(), depth = src2.depth(); int cols = src2.cols * channels, rows = src2.rows; #ifdef ANDROID size_t localThreads[3] = { 64, 2, 1 }; #else size_t localThreads[3] = { 64, 4, 1 }; #endif size_t globalThreads[3] = { cols, rows, 1 }; int src1_step = src1.step / src1.elemSize1(), src1_offset = src1.offset / src1.elemSize1(); int src2_step = src2.step / src2.elemSize1(), src2_offset = src2.offset / src2.elemSize1(); int dst1_step = dst1.step / dst1.elemSize1(), dst1_offset = dst1.offset / dst1.elemSize1(); int dst2_step = dst2.step / dst2.elemSize1(), dst2_offset = dst2.offset / dst2.elemSize1(); std::vector > args; if (src1.data) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_offset )); } args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst1_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst1_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst2_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst2_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); openCLExecuteKernel(src1.clCxt, &arithm_polarToCart, kernelName, globalThreads, localThreads, args, -1, depth, angleInDegrees ? "-D DEGREE" : "-D RADIAN"); } void cv::ocl::polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees) { if (!magnitude.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && magnitude.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(angle.depth() == CV_32F || angle.depth() == CV_64F); CV_Assert(magnitude.size() == angle.size() && magnitude.type() == angle.type()); x.create(angle.size(), angle.type()); y.create(angle.size(), angle.type()); if ( magnitude.data ) arithmetic_ptc_run(magnitude, angle, x, y, angleInDegrees, "arithm_polarToCart_mag"); else arithmetic_ptc_run(magnitude, angle, x, y, angleInDegrees, "arithm_polarToCart"); } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// minMaxLoc //////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_minMaxLoc_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum) { std::vector > args; int all_cols = src.step / (vlen * src.elemSize1()); int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize1() - 1) / (vlen * src.elemSize1()) - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / (vlen * src.elemSize1()); int repeat_s = src.offset / src.elemSize1() - offset * vlen; int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols; args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); char build_options[50]; sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; // kernel use fixed grid size, replace lt on NULL is imposible without kernel changes openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc, "arithm_op_minMaxLoc", gt, lt, args, -1, -1, build_options); } static void arithmetic_minMaxLoc_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum) { std::vector > args; size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; char build_options[50]; if (src.oclchannels() == 1) { int cols = (src.cols - 1) / vlen + 1; int invalid_cols = src.step / (vlen * src.elemSize1()) - cols; int offset = src.offset / src.elemSize1(); int repeat_me = vlen - (mask.cols % vlen == 0 ? vlen : mask.cols % vlen); int minvalid_cols = mask.step / (vlen * mask.elemSize1()) - cols; int moffset = mask.offset / mask.elemSize1(); int elemnum = cols * src.rows; sprintf(build_options, "-D DEPTH_%d -D REPEAT_E%d", src.depth(), repeat_me); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&moffset )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); // kernel use fixed grid size, replace lt on NULL is imposible without kernel changes openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc_mask, "arithm_op_minMaxLoc_mask", gt, lt, args, -1, -1, build_options); } } template void arithmetic_minMaxLoc(const oclMat &src, double *minVal, double *maxVal, Point *minLoc, Point *maxLoc, const oclMat &mask) { CV_Assert(src.oclchannels() == 1); size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits; CV_Assert(groupnum != 0); int minloc = -1 , maxloc = -1; int vlen = 4, dbsize = groupnum * vlen * 4 * sizeof(T) ; Context *clCxt = src.clCxt; cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize); *minVal = std::numeric_limits::max() , *maxVal = -std::numeric_limits::max(); if (mask.empty()) arithmetic_minMaxLoc_run(src, dstBuffer, vlen, groupnum); else arithmetic_minMaxLoc_mask_run(src, mask, dstBuffer, vlen, groupnum); AutoBuffer _buf(groupnum * vlen * 4); T *p = (T*)_buf; memset(p, 0, dbsize); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize); for (int i = 0; i < vlen * (int)groupnum; i++) { *minVal = (*minVal < p[i] || p[i + 2 * vlen * groupnum] == -1) ? *minVal : p[i]; minloc = (*minVal < p[i] || p[i + 2 * vlen * groupnum] == -1) ? minloc : cvRound(p[i + 2 * vlen * groupnum]); } for (int i = vlen * (int)groupnum; i < 2 * vlen * (int)groupnum; i++) { *maxVal = (*maxVal > p[i] || p[i + 2 * vlen * groupnum] == -1) ? *maxVal : p[i]; maxloc = (*maxVal > p[i] || p[i + 2 * vlen * groupnum] == -1) ? maxloc : cvRound(p[i + 2 * vlen * groupnum]); } int pre_rows = src.offset / src.step; int pre_cols = (src.offset % src.step) / src.elemSize1(); int wholecols = src.step / src.elemSize1(); if ( minLoc ) { if ( minloc >= 0 ) { minLoc->y = minloc / wholecols - pre_rows; minLoc->x = minloc % wholecols - pre_cols; } else minLoc->x = minLoc->y = -1; } if ( maxLoc ) { if ( maxloc >= 0 ) { maxLoc->y = maxloc / wholecols - pre_rows; maxLoc->x = maxloc % wholecols - pre_cols; } else maxLoc->x = maxLoc->y = -1; } openCLSafeCall(clReleaseMemObject(dstBuffer)); } typedef void (*minMaxLocFunc)(const oclMat &src, double *minVal, double *maxVal, Point *minLoc, Point *maxLoc, const oclMat &mask); void cv::ocl::minMaxLoc(const oclMat &src, double *minVal, double *maxVal, Point *minLoc, Point *maxLoc, const oclMat &mask) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } static minMaxLocFunc functab[2] = { arithmetic_minMaxLoc, arithmetic_minMaxLoc }; minMaxLocFunc func; func = functab[(int)src.clCxt->supportsFeature(FEATURE_CL_DOUBLE)]; func(src, minVal, maxVal, minLoc, maxLoc, mask); } ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// countNonZero /////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_countNonZero_run(const oclMat &src, cl_mem &dst, int groupnum, String kernelName) { int ochannels = src.oclchannels(); int all_cols = src.step / src.elemSize(); int pre_cols = (src.offset % src.step) / src.elemSize(); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / src.elemSize() - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / src.elemSize(); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { " ", " ", "2", "4", "4" }; String buildOptions = format("-D srcT=%s%s -D dstT=int%s", typeMap[src.depth()], channelMap[ochannels], channelMap[ochannels]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); size_t globalThreads[3] = { groupnum * 256, 1, 1 }; #ifdef ANDROID openCLExecuteKernel(src.clCxt, &arithm_nonzero, kernelName, globalThreads, NULL, args, -1, -1, buildOptions.c_str()); #else size_t localThreads[3] = { 256, 1, 1 }; openCLExecuteKernel(src.clCxt, &arithm_nonzero, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); #endif } int cv::ocl::countNonZero(const oclMat &src) { CV_Assert(src.step % src.elemSize() == 0); CV_Assert(src.channels() == 1); Context *clCxt = src.clCxt; if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "selected device doesn't support double"); return -1; } size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits; CV_Assert(groupnum != 0); int dbsize = groupnum; String kernelName = "arithm_op_nonzero"; AutoBuffer _buf(dbsize); int *p = (int*)_buf, nonzero = 0; memset(p, 0, dbsize * sizeof(int)); cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize * sizeof(int)); arithmetic_countNonZero_run(src, dstBuffer, groupnum, kernelName); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize * sizeof(int)); for (int i = 0; i < dbsize; i++) nonzero += p[i]; openCLSafeCall(clReleaseMemObject(dstBuffer)); return nonzero; } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////bitwise_op//////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void bitwise_unary_run(const oclMat &src1, oclMat &dst, String kernelName, const cv::ocl::ProgramEntry* source) { dst.create(src1.size(), src1.type()); int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); #ifdef ANDROID size_t localThreads[3] = { 64, 2, 1 }; #else size_t localThreads[3] = { 64, 4, 1 }; #endif size_t globalThreads[3] = { cols, dst.rows, 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(src1.clCxt, source, kernelName, globalThreads, localThreads, args, -1, depth); } enum { AND = 0, OR, XOR }; static void bitwise_binary_run(const oclMat &src1, const oclMat &src2, const Scalar& src3, const oclMat &mask, oclMat &dst, int operationType) { CV_Assert(operationType >= AND && operationType <= XOR); CV_Assert(src2.empty() || (!src2.empty() && src1.type() == src2.type() && src1.size() == src2.size())); CV_Assert(mask.empty() || (!mask.empty() && mask.type() == CV_8UC1 && mask.size() == src1.size())); dst.create(src1.size(), src1.type()); oclMat m; const char operationMap[] = { '&', '|', '^' }; std::string kernelName("arithm_bitwise_binary"); int vlen = std::min(8, src1.elemSize1() * src1.oclchannels()); std::string vlenstr = vlen > 1 ? format("%d", vlen) : ""; std::string buildOptions = format("-D Operation=%c -D vloadn=vload%s -D vstoren=vstore%s -D elemSize=%d -D vlen=%d" " -D ucharv=uchar%s", operationMap[operationType], vlenstr.c_str(), vlenstr.c_str(), (int)src1.elemSize(), vlen, vlenstr.c_str()); #ifdef ANDROID size_t localThreads[3] = { 16, 10, 1 }; #else size_t localThreads[3] = { 16, 16, 1 }; #endif size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); if (src2.empty()) { m.create(1, 1, dst.type()); m.setTo(src3); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&m.data )); kernelName += "_scalar"; } else { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); } if (!mask.empty()) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mask.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mask.offset )); kernelName += "_mask"; } args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); openCLExecuteKernel(src1.clCxt, mask.empty() ? (!src2.empty() ? &arithm_bitwise_binary : &arithm_bitwise_binary_scalar) : (!src2.empty() ? &arithm_bitwise_binary_mask : &arithm_bitwise_binary_scalar_mask), kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::bitwise_not(const oclMat &src, oclMat &dst) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } dst.create(src.size(), src.type()); bitwise_unary_run(src, dst, "arithm_bitwise_not", &arithm_bitwise_not); } void cv::ocl::bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { bitwise_binary_run(src1, src2, Scalar(), mask, dst, OR); } void cv::ocl::bitwise_or(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { bitwise_binary_run(src1, oclMat(), src2, mask, dst, OR); } void cv::ocl::bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { bitwise_binary_run(src1, src2, Scalar(), mask, dst, AND); } void cv::ocl::bitwise_and(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { bitwise_binary_run(src1, oclMat(), src2, mask, dst, AND); } void cv::ocl::bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { bitwise_binary_run(src1, src2, Scalar(), mask, dst, XOR); } void cv::ocl::bitwise_xor(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { bitwise_binary_run(src1, oclMat(), src2, mask, dst, XOR); } oclMat cv::ocl::operator ~ (const oclMat &src) { return oclMatExpr(src, oclMat(), MAT_NOT); } oclMat cv::ocl::operator | (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, MAT_OR); } oclMat cv::ocl::operator & (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, MAT_AND); } oclMat cv::ocl::operator ^ (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, MAT_XOR); } cv::ocl::oclMatExpr cv::ocl::operator + (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_ADD); } cv::ocl::oclMatExpr cv::ocl::operator - (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_SUB); } cv::ocl::oclMatExpr cv::ocl::operator * (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_MUL); } cv::ocl::oclMatExpr cv::ocl::operator / (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_DIV); } void oclMatExpr::assign(oclMat& m) const { switch (op) { case MAT_ADD: add(a, b, m); break; case MAT_SUB: subtract(a, b, m); break; case MAT_MUL: multiply(a, b, m); break; case MAT_DIV: divide(a, b, m); break; case MAT_NOT: bitwise_not(a, m); break; case MAT_AND: bitwise_and(a, b, m); break; case MAT_OR: bitwise_or(a, b, m); break; case MAT_XOR: bitwise_xor(a, b, m); break; } } oclMatExpr::operator oclMat() const { oclMat m; assign(m); return m; } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////// transpose //////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #define TILE_DIM (32) #define BLOCK_ROWS (256 / TILE_DIM) static void transpose_run(const oclMat &src, oclMat &dst, String kernelName, bool inplace = false) { const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char channelsString[] = { ' ', ' ', '2', '4', '4' }; std::string buildOptions = format("-D T=%s%c", typeMap[src.depth()], channelsString[src.channels()]); size_t localThreads[3] = { TILE_DIM, BLOCK_ROWS, 1 }; size_t globalThreads[3] = { src.cols, inplace ? src.rows : divUp(src.rows, TILE_DIM) * BLOCK_ROWS, 1 }; int srcstep1 = src.step / src.elemSize(), dststep1 = dst.step / dst.elemSize(); int srcoffset1 = src.offset / src.elemSize(), dstoffset1 = dst.offset / dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcstep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dststep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&srcoffset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstoffset1 )); openCLExecuteKernel(src.clCxt, &arithm_transpose, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::transpose(const oclMat &src, oclMat &dst) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } if ( src.data == dst.data && src.cols == src.rows && dst.offset == src.offset && dst.size() == src.size()) transpose_run( src, dst, "transpose_inplace", true); else { dst.create(src.cols, src.rows, src.type()); transpose_run( src, dst, "transpose"); } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////// addWeighted /////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::addWeighted(const oclMat &src1, double alpha, const oclMat &src2, double beta, double gama, oclMat &dst) { Context *clCxt = src1.clCxt; bool hasDouble = clCxt->supportsFeature(FEATURE_CL_DOUBLE); if (!hasDouble && src1.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); dst.create(src1.size(), src1.type()); int channels = dst.oclchannels(); int depth = dst.depth(); int cols1 = src1.cols * channels; int src1step1 = src1.step1(), src1offset1 = src1.offset / src1.elemSize1(); int src2step1 = src2.step1(), src2offset1 = src2.offset / src1.elemSize1(); int dststep1 = dst.step1(), dstoffset1 = dst.offset / dst.elemSize1(); const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; std::string buildOptions = format("-D T=%s -D WT=%s -D convertToT=convert_%s%s", typeMap[depth], hasDouble ? "double" : "float", typeMap[depth], depth >= CV_32F ? "" : "_sat_rte"); size_t globalThreads[3] = { cols1, dst.rows, 1}; float alpha_f = static_cast(alpha), beta_f = static_cast(beta), gama_f = static_cast(gama); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1offset1)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2offset1)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dststep1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dstoffset1)); if (!hasDouble) { args.push_back( std::make_pair( sizeof(cl_float), (void *)&alpha_f )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&beta_f )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&gama_f )); } else { args.push_back( std::make_pair( sizeof(cl_double), (void *)&alpha )); args.push_back( std::make_pair( sizeof(cl_double), (void *)&beta )); args.push_back( std::make_pair( sizeof(cl_double), (void *)&gama )); } args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); #ifdef ANDROID openCLExecuteKernel(clCxt, &arithm_addWeighted, "addWeighted", globalThreads, NULL, args, -1, -1, buildOptions.c_str()); #else size_t localThreads[3] = { 256, 1, 1}; openCLExecuteKernel(clCxt, &arithm_addWeighted, "addWeighted", globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); #endif } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// Pow ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_pow_run(const oclMat &src, double p, oclMat &dst, String kernelName, const cv::ocl::ProgramEntry* source) { int channels = dst.oclchannels(); int depth = dst.depth(); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; const char * const typeStr = depth == CV_32F ? "float" : "double"; const char * const channelMap[] = { "", "", "2", "4", "4" }; std::string buildOptions = format("-D VT=%s%s -D T=%s", typeStr, channelMap[channels], typeStr); int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize(); int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols )); float pf = static_cast(p); if(src.depth() == CV_32F) args.push_back( std::make_pair( sizeof(cl_float), (void *)&pf )); else args.push_back( std::make_pair( sizeof(cl_double), (void *)&p )); openCLExecuteKernel(src.clCxt, source, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str()); } void cv::ocl::pow(const oclMat &x, double p, oclMat &y) { if (!x.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && x.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(x.depth() == CV_32F || x.depth() == CV_64F); y.create(x.size(), x.type()); arithmetic_pow_run(x, p, y, "arithm_pow", &arithm_pow); } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////// setIdentity ////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::setIdentity(oclMat& src, const Scalar & scalar) { if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(Error::OpenCLDoubleNotSupported, "Selected device doesn't support double"); return; } CV_Assert(src.step % src.elemSize() == 0); int src_step1 = src.step / src.elemSize(), src_offset1 = src.offset / src.elemSize(); size_t local_threads[] = { 16, 16, 1 }; size_t global_threads[] = { src.cols, src.rows, 1 }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const channelMap[] = { "", "", "2", "4", "4" }; String buildOptions = format("-D T=%s%s", typeMap[src.depth()], channelMap[src.oclchannels()]); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset1 )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows)); oclMat sc(1, 1, src.type(), scalar); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sc.data )); openCLExecuteKernel(src.clCxt, &arithm_setidentity, "setIdentity", global_threads, local_threads, args, -1, -1, buildOptions.c_str()); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// Repeat //////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::repeat(const oclMat & src, int ny, int nx, oclMat & dst) { CV_Assert(nx > 0 && ny > 0); dst.create(src.rows * ny, src.cols * nx, src.type()); for (int y = 0; y < ny; ++y) for (int x = 0; x < nx; ++x) { Rect roi(x * src.cols, y * src.rows, src.cols, src.rows); oclMat hdr = dst(roi); src.copyTo(hdr); } }