/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jin Ma, jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; namespace cv { namespace ocl { typedef struct _contant_struct { cl_float c_Tb; cl_float c_TB; cl_float c_Tg; cl_float c_varInit; cl_float c_varMin; cl_float c_varMax; cl_float c_tau; cl_uchar c_shadowVal; }contant_struct; cl_mem cl_constants = NULL; float c_TB; } } #if defined _MSC_VER #define snprintf sprintf_s #endif namespace cv { namespace ocl { namespace device { namespace mog { void mog_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma); void getBackgroundImage_ocl(int cn, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures, float backgroundRatio); void loadConstants(float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal); void mog2_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& modesUsed, oclMat& weight, oclMat& variance, oclMat& mean, float alphaT, float prune, bool detectShadows, int nmixtures); void getBackgroundImage2_ocl(int cn, const oclMat& modesUsed, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures); } }}} namespace mog { const int defaultNMixtures = 5; const int defaultHistory = 200; const float defaultBackgroundRatio = 0.7f; const float defaultVarThreshold = 2.5f * 2.5f; const float defaultNoiseSigma = 30.0f * 0.5f; const float defaultInitialWeight = 0.05f; } void cv::ocl::BackgroundSubtractor::operator()(const oclMat&, oclMat&, float) { } cv::ocl::BackgroundSubtractor::~BackgroundSubtractor() { } cv::ocl::MOG::MOG(int nmixtures) : frameSize_(0, 0), frameType_(0), nframes_(0) { nmixtures_ = std::min(nmixtures > 0 ? nmixtures : mog::defaultNMixtures, 8); history = mog::defaultHistory; varThreshold = mog::defaultVarThreshold; backgroundRatio = mog::defaultBackgroundRatio; noiseSigma = mog::defaultNoiseSigma; } void cv::ocl::MOG::initialize(cv::Size frameSize, int frameType) { CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); frameSize_ = frameSize; frameType_ = frameType; int ch = CV_MAT_CN(frameType); int work_ch = ch; // for each gaussian mixture of each pixel bg model we store // the mixture sort key (w/sum_of_variances), the mixture weight (w), // the mean (nchannels values) and // the diagonal covariance matrix (another nchannels values) weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); weight_.setTo(cv::Scalar::all(0)); sortKey_.setTo(cv::Scalar::all(0)); mean_.setTo(cv::Scalar::all(0)); var_.setTo(cv::Scalar::all(0)); nframes_ = 0; } void cv::ocl::MOG::operator()(const cv::ocl::oclMat& frame, cv::ocl::oclMat& fgmask, float learningRate) { using namespace cv::ocl::device::mog; CV_Assert(frame.depth() == CV_8U); int ch = frame.oclchannels(); int work_ch = ch; if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.oclchannels()) initialize(frame.size(), frame.type()); fgmask.create(frameSize_, CV_8UC1); ++nframes_; learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(nframes_, history); CV_Assert(learningRate >= 0.0f); mog_ocl(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_, varThreshold, learningRate, backgroundRatio, noiseSigma); } void cv::ocl::MOG::getBackgroundImage(oclMat& backgroundImage) const { using namespace cv::ocl::device::mog; backgroundImage.create(frameSize_, frameType_); cv::ocl::device::mog::getBackgroundImage_ocl(backgroundImage.oclchannels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio); } void cv::ocl::MOG::release() { frameSize_ = Size(0, 0); frameType_ = 0; nframes_ = 0; weight_.release(); sortKey_.release(); mean_.release(); var_.release(); clReleaseMemObject(cl_constants); } static void mog_withoutLearning(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& mean, oclMat& var, int nmixtures, float varThreshold, float backgroundRatio) { Context* clCxt = Context::getContext(); size_t local_thread[] = {32, 8, 1}; size_t global_thread[] = {frame.cols, frame.rows, 1}; int frame_step = (int)(frame.step/frame.elemSize()); int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); int weight_step = (int)(weight.step/weight.elemSize()); int mean_step = (int)(mean.step/mean.elemSize()); int var_step = (int)(var.step/var.elemSize()); int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); int frame_offset_y = (int)(frame.offset/frame.step); int frame_offset_x = (int)(frame.offset%frame.step); frame_offset_x = frame_offset_x/(int)frame.elemSize(); char build_option[50]; if(cn == 1) { snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); }else { snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); } String kernel_name = "mog_withoutLearning_kernel"; std::vector > args; args.push_back(std::make_pair(sizeof(cl_mem), (void*)&frame.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&fgmask.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&weight.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&mean.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&var.data)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&weight_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&mean_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&var_step)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&varThreshold)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&backgroundRatio)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_offset_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_offset_y)); openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); } static void mog_withLearning(const oclMat& frame, int cn, oclMat& fgmask_raw, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, int nmixtures, float varThreshold, float backgroundRatio, float learningRate, float minVar) { Context* clCxt = Context::getContext(); size_t local_thread[] = {32, 8, 1}; size_t global_thread[] = {frame.cols, frame.rows, 1}; oclMat fgmask(fgmask_raw.size(), CV_32SC1); int frame_step = (int)(frame.step/frame.elemSize()); int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); int weight_step = (int)(weight.step/weight.elemSize()); int sortKey_step = (int)(sortKey.step/sortKey.elemSize()); int mean_step = (int)(mean.step/mean.elemSize()); int var_step = (int)(var.step/var.elemSize()); int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); int frame_offset_y = (int)(frame.offset/frame.step); int frame_offset_x = (int)(frame.offset%frame.step); frame_offset_x = frame_offset_x/(int)frame.elemSize(); char build_option[50]; if(cn == 1) { snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); }else { snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); } String kernel_name = "mog_withLearning_kernel"; std::vector > args; args.push_back(std::make_pair(sizeof(cl_mem), (void*)&frame.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&fgmask.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&weight.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&sortKey.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&mean.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&var.data)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&weight_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&sortKey_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&mean_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&var_step)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&varThreshold)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&backgroundRatio)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&learningRate)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&minVar)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_offset_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_offset_y)); openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); fgmask.convertTo(fgmask, CV_8U); fgmask.copyTo(fgmask_raw); } void cv::ocl::device::mog::mog_ocl(const oclMat& frame, int cn, oclMat& fgmask, oclMat& weight, oclMat& sortKey, oclMat& mean, oclMat& var, int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma) { const float minVar = noiseSigma * noiseSigma; if(learningRate > 0.0f) mog_withLearning(frame, cn, fgmask, weight, sortKey, mean, var, nmixtures, varThreshold, backgroundRatio, learningRate, minVar); else mog_withoutLearning(frame, cn, fgmask, weight, mean, var, nmixtures, varThreshold, backgroundRatio); } void cv::ocl::device::mog::getBackgroundImage_ocl(int cn, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures, float backgroundRatio) { Context* clCxt = Context::getContext(); size_t local_thread[] = {32, 8, 1}; size_t global_thread[] = {dst.cols, dst.rows, 1}; int weight_step = (int)(weight.step/weight.elemSize()); int mean_step = (int)(mean.step/mean.elemSize()); int dst_step = (int)(dst.step/dst.elemSize()); char build_option[50]; if(cn == 1) { snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); }else { snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); } String kernel_name = "getBackgroundImage_kernel"; std::vector > args; args.push_back(std::make_pair(sizeof(cl_mem), (void*)&weight.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&mean.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&dst.data)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&dst.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&dst.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&weight_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&mean_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&dst_step)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&backgroundRatio)); openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); } void cv::ocl::device::mog::loadConstants(float Tb, float TB, float Tg, float varInit, float varMin, float varMax, float tau, unsigned char shadowVal) { varMin = cv::min(varMin, varMax); varMax = cv::max(varMin, varMax); c_TB = TB; _contant_struct *constants = new _contant_struct; constants->c_Tb = Tb; constants->c_TB = TB; constants->c_Tg = Tg; constants->c_varInit = varInit; constants->c_varMin = varMin; constants->c_varMax = varMax; constants->c_tau = tau; constants->c_shadowVal = shadowVal; cl_constants = load_constant(*((cl_context*)getClContextPtr()), *((cl_command_queue*)getClCommandQueuePtr()), (void *)constants, sizeof(_contant_struct)); } void cv::ocl::device::mog::mog2_ocl(const oclMat& frame, int cn, oclMat& fgmaskRaw, oclMat& modesUsed, oclMat& weight, oclMat& variance, oclMat& mean, float alphaT, float prune, bool detectShadows, int nmixtures) { oclMat fgmask(fgmaskRaw.size(), CV_32SC1); Context* clCxt = Context::getContext(); const float alpha1 = 1.0f - alphaT; cl_int detectShadows_flag = 0; if(detectShadows) detectShadows_flag = 1; size_t local_thread[] = {32, 8, 1}; size_t global_thread[] = {frame.cols, frame.rows, 1}; int frame_step = (int)(frame.step/frame.elemSize()); int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); int weight_step = (int)(weight.step/weight.elemSize()); int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); int mean_step = (int)(mean.step/mean.elemSize()); int var_step = (int)(variance.step/variance.elemSize()); int fgmask_offset_y = (int)(fgmask.offset/fgmask.step); int fgmask_offset_x = (int)(fgmask.offset%fgmask.step); fgmask_offset_x = fgmask_offset_x/(int)fgmask.elemSize(); int frame_offset_y = (int)(frame.offset/frame.step); int frame_offset_x = (int)(frame.offset%frame.step); frame_offset_x = frame_offset_x/(int)frame.elemSize(); String kernel_name = "mog2_kernel"; std::vector > args; char build_option[50]; if(cn == 1) { snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); }else { snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); } args.push_back(std::make_pair(sizeof(cl_mem), (void*)&frame.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&fgmask.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&weight.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&mean.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&modesUsed.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&variance.data)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&weight_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&mean_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&modesUsed_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&var_step)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&alphaT)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&alpha1)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&prune)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&detectShadows_flag)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_offset_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&fgmask_offset_y)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_offset_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&frame_offset_y)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&cl_constants)); openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); fgmask.convertTo(fgmask, CV_8U); fgmask.copyTo(fgmaskRaw); } void cv::ocl::device::mog::getBackgroundImage2_ocl(int cn, const oclMat& modesUsed, const oclMat& weight, const oclMat& mean, oclMat& dst, int nmixtures) { Context* clCxt = Context::getContext(); size_t local_thread[] = {32, 8, 1}; size_t global_thread[] = {modesUsed.cols, modesUsed.rows, 1}; int weight_step = (int)(weight.step/weight.elemSize()); int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); int mean_step = (int)(mean.step/mean.elemSize()); int dst_step = (int)(dst.step/dst.elemSize()); int dst_y = (int)(dst.offset/dst.step); int dst_x = (int)(dst.offset%dst.step); dst_x = dst_x/(int)dst.elemSize(); String kernel_name = "getBackgroundImage2_kernel"; std::vector > args; char build_option[50]; if(cn == 1) { snprintf(build_option, 50, "-D CN1 -D NMIXTURES=%d", nmixtures); }else { snprintf(build_option, 50, "-D NMIXTURES=%d", nmixtures); } args.push_back(std::make_pair(sizeof(cl_mem), (void*)&modesUsed.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&weight.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&mean.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void*)&dst.data)); args.push_back(std::make_pair(sizeof(cl_float), (void*)&c_TB)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&modesUsed.rows)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&modesUsed.cols)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&modesUsed_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&weight_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&mean_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&dst_step)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&dst_x)); args.push_back(std::make_pair(sizeof(cl_int), (void*)&dst_y)); openCLExecuteKernel(clCxt, &bgfg_mog, kernel_name, global_thread, local_thread, args, -1, -1, build_option); } ///////////////////////////////////////////////////////////////// // MOG2 namespace mog2 { // default parameters of gaussian background detection algorithm const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2 const float defaultVarThreshold = 4.0f * 4.0f; const int defaultNMixtures = 5; // maximal number of Gaussians in mixture const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test const float defaultVarThresholdGen = 3.0f * 3.0f; const float defaultVarInit = 15.0f; // initial variance for new components const float defaultVarMax = 5.0f * defaultVarInit; const float defaultVarMin = 4.0f; // additional parameters const float defaultfCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components const unsigned char defaultnShadowDetection = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection const float defaultfTau = 0.5f; // Tau - shadow threshold, see the paper for explanation } cv::ocl::MOG2::MOG2(int nmixtures) : frameSize_(0, 0), frameType_(0), nframes_(0) { nmixtures_ = nmixtures > 0 ? nmixtures : mog2::defaultNMixtures; history = mog2::defaultHistory; varThreshold = mog2::defaultVarThreshold; bShadowDetection = true; backgroundRatio = mog2::defaultBackgroundRatio; fVarInit = mog2::defaultVarInit; fVarMax = mog2::defaultVarMax; fVarMin = mog2::defaultVarMin; varThresholdGen = mog2::defaultVarThresholdGen; fCT = mog2::defaultfCT; nShadowDetection = mog2::defaultnShadowDetection; fTau = mog2::defaultfTau; } void cv::ocl::MOG2::initialize(cv::Size frameSize, int frameType) { using namespace cv::ocl::device::mog; CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4); frameSize_ = frameSize; frameType_ = frameType; nframes_ = 0; int ch = CV_MAT_CN(frameType); int work_ch = ch; // for each gaussian mixture of each pixel bg model we store ... // the mixture weight (w), // the mean (nchannels values) and // the covariance weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); weight_.setTo(Scalar::all(0)); variance_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); variance_.setTo(Scalar::all(0)); mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); //4 channels mean_.setTo(Scalar::all(0)); //make the array for keeping track of the used modes per pixel - all zeros at start bgmodelUsedModes_.create(frameSize_, CV_32FC1); bgmodelUsedModes_.setTo(cv::Scalar::all(0)); loadConstants(varThreshold, backgroundRatio, varThresholdGen, fVarInit, fVarMin, fVarMax, fTau, nShadowDetection); } void cv::ocl::MOG2::operator()(const oclMat& frame, oclMat& fgmask, float learningRate) { using namespace cv::ocl::device::mog; int ch = frame.oclchannels(); int work_ch = ch; if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.oclchannels()) initialize(frame.size(), frame.type()); fgmask.create(frameSize_, CV_8UC1); fgmask.setTo(cv::Scalar::all(0)); ++nframes_; learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history); CV_Assert(learningRate >= 0.0f); mog2_ocl(frame, frame.oclchannels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, nmixtures_); } void cv::ocl::MOG2::getBackgroundImage(oclMat& backgroundImage) const { using namespace cv::ocl::device::mog; backgroundImage.create(frameSize_, frameType_); cv::ocl::device::mog::getBackgroundImage2_ocl(backgroundImage.oclchannels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, nmixtures_); } void cv::ocl::MOG2::release() { frameSize_ = Size(0, 0); frameType_ = 0; nframes_ = 0; weight_.release(); variance_.release(); mean_.release(); bgmodelUsedModes_.release(); }