/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jin Ma, jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; using namespace cv; using namespace cv::ocl; KalmanFilter::KalmanFilter() { } KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type) { init(dynamParams, measureParams, controlParams, type); } void KalmanFilter::init(int DP, int MP, int CP, int type) { CV_Assert( DP > 0 && MP > 0 ); CV_Assert( type == CV_32F || type == CV_64F ); CP = cv::max(CP, 0); statePre.create(DP, 1, type); statePre.setTo(Scalar::all(0)); statePost.create(DP, 1, type); statePost.setTo(Scalar::all(0)); transitionMatrix.create(DP, DP, type); setIdentity(transitionMatrix, 1); processNoiseCov.create(DP, DP, type); setIdentity(processNoiseCov, 1); measurementNoiseCov.create(MP, MP, type); setIdentity(measurementNoiseCov, 1); measurementMatrix.create(MP, DP, type); measurementMatrix.setTo(Scalar::all(0)); errorCovPre.create(DP, DP, type); errorCovPre.setTo(Scalar::all(0)); errorCovPost.create(DP, DP, type); errorCovPost.setTo(Scalar::all(0)); gain.create(DP, MP, type); gain.setTo(Scalar::all(0)); if( CP > 0 ) { controlMatrix.create(DP, CP, type); controlMatrix.setTo(Scalar::all(0)); } else controlMatrix.release(); temp1.create(DP, DP, type); temp2.create(MP, DP, type); temp3.create(MP, MP, type); temp4.create(MP, DP, type); temp5.create(MP, 1, type); } CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control) { gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre); oclMat temp; if(control.data) gemm(controlMatrix, control, 1, statePre, 1, statePre); gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1); gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T); statePre.copyTo(statePost); return statePre; } CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement) { CV_Assert(measurement.empty() == false); gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2); gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T); Mat temp; solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD); temp4.upload(temp); gain = temp4.t(); gemm(measurementMatrix, statePre, -1, measurement, 1, temp5); gemm(gain, temp5, 1, statePre, 1, statePost); gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost); return statePost; }