/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /*//Implementation of the Gaussian mixture model background subtraction from: // //"Improved adaptive Gausian mixture model for background subtraction" //Z.Zivkovic //International Conference Pattern Recognition, UK, August, 2004 //http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf //The code is very fast and performs also shadow detection. //Number of Gausssian components is adapted per pixel. // // and // //"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction" //Z.Zivkovic, F. van der Heijden //Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006. // //The algorithm similar to the standard Stauffer&Grimson algorithm with //additional selection of the number of the Gaussian components based on: // //"Recursive unsupervised learning of finite mixture models " //Z.Zivkovic, F.van der Heijden //IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004 //http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf // // // // Example usage as part of the CvBGStatModel: // CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame ); // // //update for each frame // cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground // // //release at the program termination // cvReleaseBGStatModel( &bg_model ); // //Author: Z.Zivkovic, www.zoranz.net //Date: 27-April-2005, Version:0.9 ///////////*/ #include "precomp.hpp" #define CV_BG_MODEL_MOG2 3 /* "Mixture of Gaussians 2". */ /* default parameters of gaussian background detection algorithm */ #define CV_BGFG_MOG2_STD_THRESHOLD 4.0f /* lambda=2.5 is 99% */ #define CV_BGFG_MOG2_WINDOW_SIZE 500 /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */ #define CV_BGFG_MOG2_BACKGROUND_THRESHOLD 0.9f /* threshold sum of weights for background test */ #define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE 3.0f /* lambda=2.5 is 99% */ #define CV_BGFG_MOG2_NGAUSSIANS 5 /* = K = number of Gaussians in mixture */ #define CV_BGFG_MOG2_SIGMA_INIT 15.0f #define CV_BGFG_MOG2_MINAREA 15.0f /* additional parameters */ #define CV_BGFG_MOG2_CT 0.05f /* complexity reduction prior constant 0 - no reduction of number of components*/ #define CV_BGFG_MOG2_SHADOW_VALUE 127 /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/ #define CV_BGFG_MOG2_SHADOW_TAU 0.5f /* Tau - shadow threshold, see the paper for explanation*/ struct CvGaussBGStatModel2Params { bool bPostFiltering;//defult 1 - do postfiltering double minArea; // for postfiltering bool bShadowDetection;//default 1 - do shadow detection bool bRemoveForeground;//default 0, set to 1 to remove foreground pixels from the image and return background image bool bInit;//default 1, faster updates at start ///////////////////////// //very important parameters - things you will change //////////////////////// float fAlphaT; //alpha - speed of update - if the time interval you want to average over is T //set alpha=1/T. It is also usefull at start to make T slowly increase //from 1 until the desired T float fTb; //Tb - threshold on the squared Mahalan. dist. to decide if it is well described //by the background model or not. Related to Cthr from the paper. //This does not influence the update of the background. A typical value could be 4 sigma //and that is Tb=4*4=16; ///////////////////////// //less important parameters - things you might change but be carefull //////////////////////// float fTg; //Tg - threshold on the squared Mahalan. dist. to decide //when a sample is close to the existing components. If it is not close //to any a new component will be generated. I use 3 sigma => Tg=3*3=9. //Smaller Tg leads to more generated components and higher Tg might make //lead to small number of components but they can grow too large float fTB;//1-cf from the paper //TB - threshold when the component becomes significant enough to be included into //the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0. //For alpha=0.001 it means that the mode should exist for approximately 105 frames before //it is considered foreground float fSigma; //initial standard deviation for the newly generated components. //It will will influence the speed of adaptation. A good guess should be made. //A simple way is to estimate the typical standard deviation from the images. //I used here 10 as a reasonable value float fCT;//CT - complexity reduction prior //this is related to the number of samples needed to accept that a component //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get //the standard Stauffer&Grimson algorithm (maybe not exact but very similar) //even less important parameters int nM;//max number of modes - const - 4 is usually enough //shadow detection parameters unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result float fTau; // Tau - shadow threshold. The shadow is detected if the pixel is darker //version of the background. Tau is a threshold on how much darker the shadow can be. //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003. }; struct CvPBGMMGaussian { float sigma; float muR; float muG; float muB; float weight; }; struct CvGaussBGStatModel2Data { int nWidth,nHeight,nSize,nNBands;//image info // dynamic array for the mixture of Gaussians std::vector rGMM; std::vector rnUsedModes;//number of Gaussian components per pixel }; //only foreground image is updated //no filtering included struct CvGaussBGModel2 { CvGaussBGStatModel2Params params; CvGaussBGStatModel2Data data; int countFrames; }; static int _icvRemoveShadowGMM(long posPixel, float red, float green, float blue, unsigned char nModes, CvPBGMMGaussian* m_aGaussians, float m_fTb, float m_fTB, float m_fTau) { //calculate distances to the modes (+ sort???) //here we need to go in descending order!!! long pos; float tWeight = 0; float numerator, denominator; // check all the distributions, marked as background: for (int iModes=0;iModes= m_fTau))//m_nBeta=1 { float dR=a * muR - red; float dG=a * muG - green; float dB=a * muB - blue; //square distance -slower and less accurate //float maxDistance = cvSqrt(m_fTb*var); //if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance)) //circle float dist=(dR*dR+dG*dG+dB*dB); if (dist m_fTB) { break; }; }; return 0; } static int _icvUpdatePixelBackgroundGMM(long posPixel, float red, float green, float blue, unsigned char* pModesUsed, CvPBGMMGaussian* m_aGaussians, int m_nM, float m_fAlphaT, float m_fTb, float m_fTB, float m_fTg, float m_fSigma, float m_fPrune) { //calculate distances to the modes (+ sort???) //here we need to go in descending order!!! long pos; bool bFitsPDF=0; bool bBackground=0; float m_fOneMinAlpha=1-m_fAlphaT; unsigned char nModes=*pModesUsed; float totalWeight=0.0f; ////// //go through all modes for (int iModes=0;iModes20*m_fAlphaT?20*m_fAlphaT:k; //float sigmanew = var + k*((0.33*(dR*dR+dG*dG+dB*dB))-var); //float sigmanew = var + k*((dR*dR+dG*dG+dB*dB)-var); //float sigmanew = var + k*((0.33*dist)-var); float sigmanew = var + k*(dist-var); //limit the variance //m_aGaussians[pos].sigma = sigmanew>70?70:sigmanew; //m_aGaussians[pos].sigma = sigmanew>5*m_fSigma?5*m_fSigma:sigmanew; m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>5*m_fSigma?5*m_fSigma:sigmanew; //m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>3*m_fSigma?3*m_fSigma:sigmanew; //m_aGaussians[pos].sigma = m_fSigma; //sort //all other weights are at the same place and //only the matched (iModes) is higher -> just find the new place for it for (int iLocal = iModes;iLocal>0;iLocal--) { long posLocal=posPixel + iLocal; if (weight < (m_aGaussians[posLocal-1].weight)) { break; } else { //swap CvPBGMMGaussian temp = m_aGaussians[posLocal]; m_aGaussians[posLocal] = m_aGaussians[posLocal-1]; m_aGaussians[posLocal-1] = temp; } } //belongs to the mode ///// } else { weight=m_fOneMinAlpha*weight+m_fPrune; //check prune if (weight<-m_fPrune) { weight=0.0; nModes--; // bPrune=1; //break;//the components are sorted so we can skip the rest } } //check if it fits the current mode (2.5 sigma) /////// } //fit not found yet ///// else { weight=m_fOneMinAlpha*weight+m_fPrune; //check prune if (weight<-m_fPrune) { weight=0.0; nModes--; } } totalWeight+=weight; m_aGaussians[pos].weight=weight; } //go through all modes ////// //renormalize weights for (int iLocal = 0; iLocal < nModes; iLocal++) { m_aGaussians[posPixel+ iLocal].weight = m_aGaussians[posPixel+ iLocal].weight/totalWeight; } //make new mode if needed and exit if (!bFitsPDF) { if (nModes==m_nM) { //replace the weakest } else { //add a new one nModes++; } pos=posPixel+nModes-1; if (nModes==1) m_aGaussians[pos].weight=1; else m_aGaussians[pos].weight=m_fAlphaT; //renormalize weights int iLocal; for (iLocal = 0; iLocal < nModes-1; iLocal++) { m_aGaussians[posPixel+ iLocal].weight *=m_fOneMinAlpha; } m_aGaussians[pos].muR=red; m_aGaussians[pos].muG=green; m_aGaussians[pos].muB=blue; m_aGaussians[pos].sigma=m_fSigma; //sort //find the new place for it for (iLocal = nModes-1;iLocal>0;iLocal--) { long posLocal=posPixel + iLocal; if (m_fAlphaT < (m_aGaussians[posLocal-1].weight)) { break; } else { //swap CvPBGMMGaussian temp = m_aGaussians[posLocal]; m_aGaussians[posLocal] = m_aGaussians[posLocal-1]; m_aGaussians[posLocal-1] = temp; } } } //set the number of modes *pModesUsed=nModes; return bBackground; } static void _icvReplacePixelBackgroundGMM(long pos, unsigned char* pData, CvPBGMMGaussian* m_aGaussians) { pData[0]=(unsigned char) m_aGaussians[pos].muR; pData[1]=(unsigned char) m_aGaussians[pos].muG; pData[2]=(unsigned char) m_aGaussians[pos].muB; } static void icvUpdatePixelBackgroundGMM(CvGaussBGStatModel2Data* pGMMData,CvGaussBGStatModel2Params* pGMM, float m_fAlphaT, unsigned char* data,unsigned char* output) { int size=pGMMData->nSize; unsigned char* pDataCurrent=data; unsigned char* pUsedModes=&pGMMData->rnUsedModes[0]; unsigned char* pDataOutput=output; //some constants int m_nM=pGMM->nM; //float m_fAlphaT=pGMM->fAlphaT; float m_fTb=pGMM->fTb;//Tb - threshold on the Mahalan. dist. float m_fTB=pGMM->fTB;//1-TF from the paper float m_fTg=pGMM->fTg;//Tg - when to generate a new component float m_fSigma=pGMM->fSigma;//initial sigma float m_fCT=pGMM->fCT;//CT - complexity reduction prior float m_fPrune=-m_fAlphaT*m_fCT; float m_fTau=pGMM->fTau; CvPBGMMGaussian* m_aGaussians=&pGMMData->rGMM[0]; long posPixel=0; bool m_bShadowDetection=pGMM->bShadowDetection; unsigned char m_nShadowDetection=pGMM->nShadowDetection; //go through the image for (int i=0;ibRemoveForeground) { _icvReplacePixelBackgroundGMM(posPixel,pDataCurrent,m_aGaussians); } break; case 1: //background (* pDataOutput)=0; break; case 2: //shadow (* pDataOutput)=m_nShadowDetection; if (pGMM->bRemoveForeground) { _icvReplacePixelBackgroundGMM(posPixel,pDataCurrent,m_aGaussians); } break; } posPixel+=m_nM; pDataCurrent+=3; pDataOutput++; pUsedModes++; } } namespace cv { BackgroundSubtractorMOG2::BackgroundSubtractorMOG2() { model = 0; initialize(Size(), 0); } BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(double alphaT, double sigma, int nmixtures, bool postFiltering, double minArea, bool detectShadows, bool removeForeground, double Tb, double Tg, double TB, double CT, uchar shadowValue, double tau) { model = 0; initialize(Size(), alphaT, sigma, nmixtures, postFiltering, minArea, detectShadows, removeForeground, Tb, Tg, TB, CT, shadowValue, tau); } void BackgroundSubtractorMOG2::initialize(Size frameSize, double alphaT, double sigma, int nmixtures, bool postFiltering, double minArea, bool detectShadows, bool removeForeground, double Tb, double Tg, double TB, double CT, uchar shadowValue, double tau) { if(!model) model = new CvGaussBGModel2; CvGaussBGModel2* bg_model = (CvGaussBGModel2*)model; bg_model->params.bRemoveForeground=removeForeground; bg_model->params.bShadowDetection = detectShadows; bg_model->params.bPostFiltering = postFiltering; bg_model->params.minArea = minArea; bg_model->params.nM = nmixtures; bg_model->params.fTb = Tb; bg_model->params.fTB = TB; bg_model->params.fTg = Tg; bg_model->params.fSigma = sigma; bg_model->params.fAlphaT = alphaT; bg_model->params.fCT = CT; bg_model->params.nShadowDetection = shadowValue; bg_model->params.fTau = tau; int w = frameSize.width; int h = frameSize.height; int size = w*h; if( (bg_model->data.nWidth != w || bg_model->data.nHeight != h) && w > 0 && h > 0 ) { bg_model->data.nWidth=w; bg_model->data.nHeight=h; bg_model->data.nNBands=3; bg_model->data.nSize=size; //GMM for each pixel bg_model->data.rGMM.resize(size * bg_model->params.nM); } //used modes per pixel bg_model->data.rnUsedModes.resize(0); bg_model->data.rnUsedModes.resize(size, (uchar)0); bg_model->params.bInit = true; bg_model->countFrames = 0; } BackgroundSubtractorMOG2::~BackgroundSubtractorMOG2() { delete (CvGaussBGModel2*)model; } void BackgroundSubtractorMOG2::operator()(const Mat& image0, Mat& fgmask0, double learningRate) { CvGaussBGModel2* bg_model = (CvGaussBGModel2*)model; CV_Assert(bg_model != 0); Mat fgmask = fgmask0, image = image0; CV_Assert( image.type() == CV_8UC1 || image.type() == CV_8UC3 ); if( learningRate <= 0 ) learningRate = bg_model->params.fAlphaT; if( learningRate >= 1 ) { learningRate = 1; bg_model->params.bInit = true; } if( image.size() != Size(bg_model->data.nWidth, bg_model->data.nHeight) ) initialize(image.size(), learningRate, bg_model->params.fSigma, bg_model->params.nM, bg_model->params.bPostFiltering, bg_model->params.minArea, bg_model->params.bShadowDetection, bg_model->params.bRemoveForeground, bg_model->params.fTb, bg_model->params.fTg, bg_model->params.fTB, bg_model->params.fCT, bg_model->params.nShadowDetection, bg_model->params.fTau); //int i, j, k, n; float alpha = (float)bg_model->params.fAlphaT; bg_model->countFrames++; if (bg_model->params.bInit) { //faster initial updates float alphaInit = 1.0f/(2*bg_model->countFrames+1); if( alphaInit > alpha ) alpha = alphaInit; else bg_model->params.bInit = false; } if( !image.isContinuous() || image.channels() != 3 ) { image.release(); image.create(image0.size(), CV_8UC3); if( image0.type() == image.type() ) image0.copyTo(image); else cvtColor(image0, image, CV_GRAY2BGR); } if( !fgmask.isContinuous() ) fgmask.release(); fgmask.create(image.size(), CV_8UC1); icvUpdatePixelBackgroundGMM(&bg_model->data,&bg_model->params,alpha,image.data,fgmask.data); if (!bg_model->params.bPostFiltering) return; //foreground filtering: filter out small regions morphologyEx(fgmask, fgmask, CV_MOP_OPEN, Mat()); morphologyEx(fgmask, fgmask, CV_MOP_CLOSE, Mat()); vector > contours; findContours(fgmask, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); fgmask = Scalar::all(0); for( size_t i = 0; i < contours.size(); i++ ) { if( boundingRect(Mat(contours[i])).area() < bg_model->params.minArea ) continue; drawContours(fgmask, contours, (int)i, Scalar::all(255), -1, 8, vector(), 1); } fgmask.copyTo(fgmask0); } } /* End of file. */