//============================================================================= // // nldiffusion_functions.cpp // Author: Pablo F. Alcantarilla // Institution: University d'Auvergne // Address: Clermont Ferrand, France // Date: 27/12/2011 // Email: pablofdezalc@gmail.com // // KAZE Features Copyright 2012, Pablo F. Alcantarilla // All Rights Reserved // See LICENSE for the license information //============================================================================= /** * @file nldiffusion_functions.cpp * @brief Functions for non-linear diffusion applications: * 2D Gaussian Derivatives * Perona and Malik conductivity equations * Perona and Malik evolution * @date Dec 27, 2011 * @author Pablo F. Alcantarilla */ #include "nldiffusion_functions.h" // Namespaces using namespace std; using namespace cv; /* ************************************************************************* */ namespace cv { namespace details { namespace kaze { /* ************************************************************************* */ /** * @brief This function smoothes an image with a Gaussian kernel * @param src Input image * @param dst Output image * @param ksize_x Kernel size in X-direction (horizontal) * @param ksize_y Kernel size in Y-direction (vertical) * @param sigma Kernel standard deviation */ void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) { int ksize_x_ = 0, ksize_y_ = 0; // Compute an appropriate kernel size according to the specified sigma if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f))); ksize_y_ = ksize_x_; } // The kernel size must be and odd number if ((ksize_x_ % 2) == 0) { ksize_x_ += 1; } if ((ksize_y_ % 2) == 0) { ksize_y_ += 1; } // Perform the Gaussian Smoothing with border replication GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, cv::BORDER_REPLICATE); } /* ************************************************************************* */ /** * @brief This function computes the Perona and Malik conductivity coefficient g1 * g1 = exp(-|dL|^2/k^2) * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter */ void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), dst); } /* ************************************************************************* */ /** * @brief This function computes the Perona and Malik conductivity coefficient g2 * g2 = 1 / (1 + dL^2 / k^2) * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter */ void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { dst = 1. / (1. + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k)); } /* ************************************************************************* */ /** * @brief This function computes Weickert conductivity coefficient g3 * @param Lx First order image derivative in X-direction (horizontal) * @param Ly First order image derivative in Y-direction (vertical) * @param dst Output image * @param k Contrast factor parameter * @note For more information check the following paper: J. Weickert * Applications of nonlinear diffusion in image processing and computer vision, * Proceedings of Algorithmy 2000 */ void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { Mat modg; cv::pow((Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), 4, modg); cv::exp(-3.315 / modg, dst); dst = 1.0f - dst; } /* ************************************************************************* */ /** * @brief This function computes a good empirical value for the k contrast factor * given an input image, the percentile (0-1), the gradient scale and the number of * bins in the histogram * @param img Input image * @param perc Percentile of the image gradient histogram (0-1) * @param gscale Scale for computing the image gradient histogram * @param nbins Number of histogram bins * @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel * @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel * @return k contrast factor */ float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) { int nbin = 0, nelements = 0, nthreshold = 0, k = 0; float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0; float npoints = 0.0; float hmax = 0.0; // Create the array for the histogram std::vector hist(nbins, 0); // Create the matrices Mat gaussian = Mat::zeros(img.rows, img.cols, CV_32F); Mat Lx = Mat::zeros(img.rows, img.cols, CV_32F); Mat Ly = Mat::zeros(img.rows, img.cols, CV_32F); // Perform the Gaussian convolution gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale); // Compute the Gaussian derivatives Lx and Ly Scharr(gaussian, Lx, CV_32F, 1, 0, 1, 0, cv::BORDER_DEFAULT); Scharr(gaussian, Ly, CV_32F, 0, 1, 1, 0, cv::BORDER_DEFAULT); // Skip the borders for computing the histogram for (int i = 1; i < gaussian.rows - 1; i++) { for (int j = 1; j < gaussian.cols - 1; j++) { lx = *(Lx.ptr(i)+j); ly = *(Ly.ptr(i)+j); modg = sqrt(lx*lx + ly*ly); // Get the maximum if (modg > hmax) { hmax = modg; } } } // Skip the borders for computing the histogram for (int i = 1; i < gaussian.rows - 1; i++) { for (int j = 1; j < gaussian.cols - 1; j++) { lx = *(Lx.ptr(i)+j); ly = *(Ly.ptr(i)+j); modg = sqrt(lx*lx + ly*ly); // Find the correspondent bin if (modg != 0.0) { nbin = (int)floor(nbins*(modg / hmax)); if (nbin == nbins) { nbin--; } hist[nbin]++; npoints++; } } } // Now find the perc of the histogram percentile nthreshold = (size_t)(npoints*perc); for (k = 0; nelements < nthreshold && k < nbins; k++) { nelements = nelements + hist[k]; } if (nelements < nthreshold) { kperc = 0.03f; } else { kperc = hmax*((float)(k) / (float)nbins); } return kperc; } /* ************************************************************************* */ /** * @brief This function computes Scharr image derivatives * @param src Input image * @param dst Output image * @param xorder Derivative order in X-direction (horizontal) * @param yorder Derivative order in Y-direction (vertical) * @param scale Scale factor or derivative size */ void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) { Mat kx, ky; compute_derivative_kernels(kx, ky, xorder, yorder, scale); sepFilter2D(src, dst, CV_32F, kx, ky); } /* ************************************************************************* */ /** * @brief Compute derivative kernels for sizes different than 3 * @param _kx Horizontal kernel values * @param _ky Vertical kernel values * @param dx Derivative order in X-direction (horizontal) * @param dy Derivative order in Y-direction (vertical) * @param scale_ Scale factor or derivative size */ void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) { int ksize = 3 + 2 * (scale - 1); // The standard Scharr kernel if (scale == 1) { getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F); return; } _kx.create(ksize, 1, CV_32F, -1, true); _ky.create(ksize, 1, CV_32F, -1, true); Mat kx = _kx.getMat(); Mat ky = _ky.getMat(); float w = 10.0f / 3.0f; float norm = 1.0f / (2.0f*scale*(w + 2.0f)); for (int k = 0; k < 2; k++) { Mat* kernel = k == 0 ? &kx : &ky; int order = k == 0 ? dx : dy; std::vector kerI(ksize, 0.0f); if (order == 0) { kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm; } else if (order == 1) { kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; } Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]); temp.copyTo(*kernel); } } /* ************************************************************************* */ /** * @brief This function performs a scalar non-linear diffusion step * @param Ld2 Output image in the evolution * @param c Conductivity image * @param Lstep Previous image in the evolution * @param stepsize The step size in time units * @note Forward Euler Scheme 3x3 stencil * The function c is a scalar value that depends on the gradient norm * dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy */ void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic) #endif for (int i = 1; i < Lstep.rows - 1; i++) { for (int j = 1; j < Lstep.cols - 1; j++) { float xpos = ((*(c.ptr(i)+j)) + (*(c.ptr(i)+j + 1)))*((*(Ld.ptr(i)+j + 1)) - (*(Ld.ptr(i)+j))); float xneg = ((*(c.ptr(i)+j - 1)) + (*(c.ptr(i)+j)))*((*(Ld.ptr(i)+j)) - (*(Ld.ptr(i)+j - 1))); float ypos = ((*(c.ptr(i)+j)) + (*(c.ptr(i + 1) + j)))*((*(Ld.ptr(i + 1) + j)) - (*(Ld.ptr(i)+j))); float yneg = ((*(c.ptr(i - 1) + j)) + (*(c.ptr(i)+j)))*((*(Ld.ptr(i)+j)) - (*(Ld.ptr(i - 1) + j))); *(Lstep.ptr(i)+j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg); } } for (int j = 1; j < Lstep.cols - 1; j++) { float xpos = ((*(c.ptr(0) + j)) + (*(c.ptr(0) + j + 1)))*((*(Ld.ptr(0) + j + 1)) - (*(Ld.ptr(0) + j))); float xneg = ((*(c.ptr(0) + j - 1)) + (*(c.ptr(0) + j)))*((*(Ld.ptr(0) + j)) - (*(Ld.ptr(0) + j - 1))); float ypos = ((*(c.ptr(0) + j)) + (*(c.ptr(1) + j)))*((*(Ld.ptr(1) + j)) - (*(Ld.ptr(0) + j))); float yneg = ((*(c.ptr(0) + j)) + (*(c.ptr(0) + j)))*((*(Ld.ptr(0) + j)) - (*(Ld.ptr(0) + j))); *(Lstep.ptr(0) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg); } for (int j = 1; j < Lstep.cols - 1; j++) { float xpos = ((*(c.ptr(Lstep.rows - 1) + j)) + (*(c.ptr(Lstep.rows - 1) + j + 1)))*((*(Ld.ptr(Lstep.rows - 1) + j + 1)) - (*(Ld.ptr(Lstep.rows - 1) + j))); float xneg = ((*(c.ptr(Lstep.rows - 1) + j - 1)) + (*(c.ptr(Lstep.rows - 1) + j)))*((*(Ld.ptr(Lstep.rows - 1) + j)) - (*(Ld.ptr(Lstep.rows - 1) + j - 1))); float ypos = ((*(c.ptr(Lstep.rows - 1) + j)) + (*(c.ptr(Lstep.rows - 1) + j)))*((*(Ld.ptr(Lstep.rows - 1) + j)) - (*(Ld.ptr(Lstep.rows - 1) + j))); float yneg = ((*(c.ptr(Lstep.rows - 2) + j)) + (*(c.ptr(Lstep.rows - 1) + j)))*((*(Ld.ptr(Lstep.rows - 1) + j)) - (*(Ld.ptr(Lstep.rows - 2) + j))); *(Lstep.ptr(Lstep.rows - 1) + j) = 0.5f*stepsize*(xpos - xneg + ypos - yneg); } for (int i = 1; i < Lstep.rows - 1; i++) { float xpos = ((*(c.ptr(i))) + (*(c.ptr(i)+1)))*((*(Ld.ptr(i)+1)) - (*(Ld.ptr(i)))); float xneg = ((*(c.ptr(i))) + (*(c.ptr(i))))*((*(Ld.ptr(i))) - (*(Ld.ptr(i)))); float ypos = ((*(c.ptr(i))) + (*(c.ptr(i + 1))))*((*(Ld.ptr(i + 1))) - (*(Ld.ptr(i)))); float yneg = ((*(c.ptr(i - 1))) + (*(c.ptr(i))))*((*(Ld.ptr(i))) - (*(Ld.ptr(i - 1)))); *(Lstep.ptr(i)) = 0.5f*stepsize*(xpos - xneg + ypos - yneg); } for (int i = 1; i < Lstep.rows - 1; i++) { float xpos = ((*(c.ptr(i)+Lstep.cols - 1)) + (*(c.ptr(i)+Lstep.cols - 1)))*((*(Ld.ptr(i)+Lstep.cols - 1)) - (*(Ld.ptr(i)+Lstep.cols - 1))); float xneg = ((*(c.ptr(i)+Lstep.cols - 2)) + (*(c.ptr(i)+Lstep.cols - 1)))*((*(Ld.ptr(i)+Lstep.cols - 1)) - (*(Ld.ptr(i)+Lstep.cols - 2))); float ypos = ((*(c.ptr(i)+Lstep.cols - 1)) + (*(c.ptr(i + 1) + Lstep.cols - 1)))*((*(Ld.ptr(i + 1) + Lstep.cols - 1)) - (*(Ld.ptr(i)+Lstep.cols - 1))); float yneg = ((*(c.ptr(i - 1) + Lstep.cols - 1)) + (*(c.ptr(i)+Lstep.cols - 1)))*((*(Ld.ptr(i)+Lstep.cols - 1)) - (*(Ld.ptr(i - 1) + Lstep.cols - 1))); *(Lstep.ptr(i)+Lstep.cols - 1) = 0.5f*stepsize*(xpos - xneg + ypos - yneg); } Ld = Ld + Lstep; } /* ************************************************************************* */ /** * @brief This function checks if a given pixel is a maximum in a local neighbourhood * @param img Input image where we will perform the maximum search * @param dsize Half size of the neighbourhood * @param value Response value at (x,y) position * @param row Image row coordinate * @param col Image column coordinate * @param same_img Flag to indicate if the image value at (x,y) is in the input image * @return 1->is maximum, 0->otherwise */ bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img) { bool response = true; for (int i = row - dsize; i <= row + dsize; i++) { for (int j = col - dsize; j <= col + dsize; j++) { if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) { if (same_img == true) { if (i != row || j != col) { if ((*(img.ptr(i)+j)) > value) { response = false; return response; } } } else { if ((*(img.ptr(i)+j)) > value) { response = false; return response; } } } } } return response; } } } }