/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/video/tracking_c.h" /////////////////////////// Meanshift & CAMShift /////////////////////////// CV_IMPL int cvMeanShift( const void* imgProb, CvRect windowIn, CvTermCriteria criteria, CvConnectedComp* comp ) { cv::Mat img = cv::cvarrToMat(imgProb); cv::Rect window = windowIn; int iters = cv::meanShift(img, window, criteria); if( comp ) { comp->rect = window; comp->area = cvRound(cv::sum(img(window))[0]); } return iters; } CV_IMPL int cvCamShift( const void* imgProb, CvRect windowIn, CvTermCriteria criteria, CvConnectedComp* comp, CvBox2D* box ) { cv::Mat img = cv::cvarrToMat(imgProb); cv::Rect window = windowIn; cv::RotatedRect rr = cv::CamShift(img, window, criteria); if( comp ) { comp->rect = window; cv::Rect roi = rr.boundingRect() & cv::Rect(0, 0, img.cols, img.rows); comp->area = cvRound(cv::sum(img(roi))[0]); } if( box ) *box = rr; return rr.size.width*rr.size.height > 0.f ? 1 : -1; } ///////////////////////////////// Kalman /////////////////////////////// CV_IMPL CvKalman* cvCreateKalman( int DP, int MP, int CP ) { CvKalman *kalman = 0; if( DP <= 0 || MP <= 0 ) CV_Error( CV_StsOutOfRange, "state and measurement vectors must have positive number of dimensions" ); if( CP < 0 ) CP = DP; /* allocating memory for the structure */ kalman = (CvKalman *)cvAlloc( sizeof( CvKalman )); memset( kalman, 0, sizeof(*kalman)); kalman->DP = DP; kalman->MP = MP; kalman->CP = CP; kalman->state_pre = cvCreateMat( DP, 1, CV_32FC1 ); cvZero( kalman->state_pre ); kalman->state_post = cvCreateMat( DP, 1, CV_32FC1 ); cvZero( kalman->state_post ); kalman->transition_matrix = cvCreateMat( DP, DP, CV_32FC1 ); cvSetIdentity( kalman->transition_matrix ); kalman->process_noise_cov = cvCreateMat( DP, DP, CV_32FC1 ); cvSetIdentity( kalman->process_noise_cov ); kalman->measurement_matrix = cvCreateMat( MP, DP, CV_32FC1 ); cvZero( kalman->measurement_matrix ); kalman->measurement_noise_cov = cvCreateMat( MP, MP, CV_32FC1 ); cvSetIdentity( kalman->measurement_noise_cov ); kalman->error_cov_pre = cvCreateMat( DP, DP, CV_32FC1 ); kalman->error_cov_post = cvCreateMat( DP, DP, CV_32FC1 ); cvZero( kalman->error_cov_post ); kalman->gain = cvCreateMat( DP, MP, CV_32FC1 ); if( CP > 0 ) { kalman->control_matrix = cvCreateMat( DP, CP, CV_32FC1 ); cvZero( kalman->control_matrix ); } kalman->temp1 = cvCreateMat( DP, DP, CV_32FC1 ); kalman->temp2 = cvCreateMat( MP, DP, CV_32FC1 ); kalman->temp3 = cvCreateMat( MP, MP, CV_32FC1 ); kalman->temp4 = cvCreateMat( MP, DP, CV_32FC1 ); kalman->temp5 = cvCreateMat( MP, 1, CV_32FC1 ); #if 1 kalman->PosterState = kalman->state_pre->data.fl; kalman->PriorState = kalman->state_post->data.fl; kalman->DynamMatr = kalman->transition_matrix->data.fl; kalman->MeasurementMatr = kalman->measurement_matrix->data.fl; kalman->MNCovariance = kalman->measurement_noise_cov->data.fl; kalman->PNCovariance = kalman->process_noise_cov->data.fl; kalman->KalmGainMatr = kalman->gain->data.fl; kalman->PriorErrorCovariance = kalman->error_cov_pre->data.fl; kalman->PosterErrorCovariance = kalman->error_cov_post->data.fl; #endif return kalman; } CV_IMPL void cvReleaseKalman( CvKalman** _kalman ) { CvKalman *kalman; if( !_kalman ) CV_Error( CV_StsNullPtr, "" ); kalman = *_kalman; if( !kalman ) return; /* freeing the memory */ cvReleaseMat( &kalman->state_pre ); cvReleaseMat( &kalman->state_post ); cvReleaseMat( &kalman->transition_matrix ); cvReleaseMat( &kalman->control_matrix ); cvReleaseMat( &kalman->measurement_matrix ); cvReleaseMat( &kalman->process_noise_cov ); cvReleaseMat( &kalman->measurement_noise_cov ); cvReleaseMat( &kalman->error_cov_pre ); cvReleaseMat( &kalman->gain ); cvReleaseMat( &kalman->error_cov_post ); cvReleaseMat( &kalman->temp1 ); cvReleaseMat( &kalman->temp2 ); cvReleaseMat( &kalman->temp3 ); cvReleaseMat( &kalman->temp4 ); cvReleaseMat( &kalman->temp5 ); memset( kalman, 0, sizeof(*kalman)); /* deallocating the structure */ cvFree( _kalman ); } CV_IMPL const CvMat* cvKalmanPredict( CvKalman* kalman, const CvMat* control ) { if( !kalman ) CV_Error( CV_StsNullPtr, "" ); /* update the state */ /* x'(k) = A*x(k) */ cvMatMulAdd( kalman->transition_matrix, kalman->state_post, 0, kalman->state_pre ); if( control && kalman->CP > 0 ) /* x'(k) = x'(k) + B*u(k) */ cvMatMulAdd( kalman->control_matrix, control, kalman->state_pre, kalman->state_pre ); /* update error covariance matrices */ /* temp1 = A*P(k) */ cvMatMulAdd( kalman->transition_matrix, kalman->error_cov_post, 0, kalman->temp1 ); /* P'(k) = temp1*At + Q */ cvGEMM( kalman->temp1, kalman->transition_matrix, 1, kalman->process_noise_cov, 1, kalman->error_cov_pre, CV_GEMM_B_T ); /* handle the case when there will be measurement before the next predict */ cvCopy(kalman->state_pre, kalman->state_post); return kalman->state_pre; } CV_IMPL const CvMat* cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement ) { if( !kalman || !measurement ) CV_Error( CV_StsNullPtr, "" ); /* temp2 = H*P'(k) */ cvMatMulAdd( kalman->measurement_matrix, kalman->error_cov_pre, 0, kalman->temp2 ); /* temp3 = temp2*Ht + R */ cvGEMM( kalman->temp2, kalman->measurement_matrix, 1, kalman->measurement_noise_cov, 1, kalman->temp3, CV_GEMM_B_T ); /* temp4 = inv(temp3)*temp2 = Kt(k) */ cvSolve( kalman->temp3, kalman->temp2, kalman->temp4, CV_SVD ); /* K(k) */ cvTranspose( kalman->temp4, kalman->gain ); /* temp5 = z(k) - H*x'(k) */ cvGEMM( kalman->measurement_matrix, kalman->state_pre, -1, measurement, 1, kalman->temp5 ); /* x(k) = x'(k) + K(k)*temp5 */ cvMatMulAdd( kalman->gain, kalman->temp5, kalman->state_pre, kalman->state_post ); /* P(k) = P'(k) - K(k)*temp2 */ cvGEMM( kalman->gain, kalman->temp2, -1, kalman->error_cov_pre, 1, kalman->error_cov_post, 0 ); return kalman->state_post; } ///////////////////////////////////// Optical Flow //////////////////////////////// CV_IMPL void cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB, void* /*pyrarrA*/, void* /*pyrarrB*/, const CvPoint2D32f * featuresA, CvPoint2D32f * featuresB, int count, CvSize winSize, int level, char *status, float *error, CvTermCriteria criteria, int flags ) { if( count <= 0 ) return; CV_Assert( featuresA && featuresB ); cv::Mat A = cv::cvarrToMat(arrA), B = cv::cvarrToMat(arrB); cv::Mat ptA(count, 1, CV_32FC2, (void*)featuresA); cv::Mat ptB(count, 1, CV_32FC2, (void*)featuresB); cv::Mat st, err; if( status ) st = cv::Mat(count, 1, CV_8U, (void*)status); if( error ) err = cv::Mat(count, 1, CV_32F, (void*)error); cv::calcOpticalFlowPyrLK( A, B, ptA, ptB, st, error ? cv::_OutputArray(err) : (cv::_OutputArray)cv::noArray(), winSize, level, criteria, flags); } CV_IMPL void cvCalcOpticalFlowFarneback( const CvArr* _prev, const CvArr* _next, CvArr* _flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags ) { cv::Mat prev = cv::cvarrToMat(_prev), next = cv::cvarrToMat(_next); cv::Mat flow = cv::cvarrToMat(_flow); CV_Assert( flow.size() == prev.size() && flow.type() == CV_32FC2 ); cv::calcOpticalFlowFarneback( prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags ); } CV_IMPL int cvEstimateRigidTransform( const CvArr* arrA, const CvArr* arrB, CvMat* arrM, int full_affine ) { cv::Mat matA = cv::cvarrToMat(arrA), matB = cv::cvarrToMat(arrB); const cv::Mat matM0 = cv::cvarrToMat(arrM); cv::Mat matM = cv::estimateRigidTransform(matA, matB, full_affine != 0); if( matM.empty() ) { matM = cv::cvarrToMat(arrM); matM.setTo(cv::Scalar::all(0)); return 0; } matM.convertTo(matM0, matM0.type()); return 1; }