/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* This is a regression test for stereo matching algorithms. This test gets some quality metrics discribed in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms". Daniel Scharstein, Richard Szeliski */ #include "test_precomp.hpp" #include #include using namespace std; using namespace cv; const float EVAL_BAD_THRESH = 1.f; const int EVAL_TEXTURELESS_WIDTH = 3; const float EVAL_TEXTURELESS_THRESH = 4.f; const float EVAL_DISP_THRESH = 1.f; const float EVAL_DISP_GAP = 2.f; const int EVAL_DISCONT_WIDTH = 9; const int EVAL_IGNORE_BORDER = 10; const int ERROR_KINDS_COUNT = 6; //============================== quality measuring functions ================================================= /* Calculate textureless regions of image (regions where the squared horizontal intensity gradient averaged over a square window of size=evalTexturelessWidth is below a threshold=evalTexturelessThresh) and textured regions. */ void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* texturedMask, int texturelessWidth = EVAL_TEXTURELESS_WIDTH, float texturelessThresh = EVAL_TEXTURELESS_THRESH ) { if( !texturelessMask && !texturedMask ) return; if( _img.empty() ) CV_Error( CV_StsBadArg, "img is empty" ); Mat img = _img; if( _img.channels() > 1) { Mat tmp; cvtColor( _img, tmp, CV_BGR2GRAY ); img = tmp; } Mat dxI; Sobel( img, dxI, CV_32FC1, 1, 0, 3 ); Mat dxI2; pow( dxI / 8.f/*normalize*/, 2, dxI2 ); Mat avgDxI2; boxFilter( dxI2, avgDxI2, CV_32FC1, Size(texturelessWidth,texturelessWidth) ); if( texturelessMask ) *texturelessMask = avgDxI2 < texturelessThresh; if( texturedMask ) *texturedMask = avgDxI2 >= texturelessThresh; } void checkTypeAndSizeOfDisp( const Mat& dispMap, const Size* sz ) { if( dispMap.empty() ) CV_Error( CV_StsBadArg, "dispMap is empty" ); if( dispMap.type() != CV_32FC1 ) CV_Error( CV_StsBadArg, "dispMap must have CV_32FC1 type" ); if( sz && (dispMap.rows != sz->height || dispMap.cols != sz->width) ) CV_Error( CV_StsBadArg, "dispMap has incorrect size" ); } void checkTypeAndSizeOfMask( const Mat& mask, Size sz ) { if( mask.empty() ) CV_Error( CV_StsBadArg, "mask is empty" ); if( mask.type() != CV_8UC1 ) CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" ); if( mask.rows != sz.height || mask.cols != sz.width ) CV_Error( CV_StsBadArg, "mask has incorrect size" ); } void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDispMap, const Mat& leftUnknDispMask, const Mat& rightUnknDispMask ) { // check type and size of disparity maps checkTypeAndSizeOfDisp( leftDispMap, 0 ); if( !rightDispMap.empty() ) { Size sz = leftDispMap.size(); checkTypeAndSizeOfDisp( rightDispMap, &sz ); } // check size and type of unknown disparity maps if( !leftUnknDispMask.empty() ) checkTypeAndSizeOfMask( leftUnknDispMask, leftDispMap.size() ); if( !rightUnknDispMask.empty() ) checkTypeAndSizeOfMask( rightUnknDispMask, rightDispMap.size() ); // check values of disparity maps (known disparity values musy be positive) double leftMinVal = 0, rightMinVal = 0; if( leftUnknDispMask.empty() ) minMaxLoc( leftDispMap, &leftMinVal ); else minMaxLoc( leftDispMap, &leftMinVal, 0, 0, 0, ~leftUnknDispMask ); if( !rightDispMap.empty() ) { if( rightUnknDispMask.empty() ) minMaxLoc( rightDispMap, &rightMinVal ); else minMaxLoc( rightDispMap, &rightMinVal, 0, 0, 0, ~rightUnknDispMask ); } if( leftMinVal < 0 || rightMinVal < 0) CV_Error( CV_StsBadArg, "known disparity values must be positive" ); } /* Calculate occluded regions of reference image (left image) (regions that are occluded in the matching image (right image), i.e., where the forward-mapped disparity lands at a location with a larger (nearer) disparity) and non occluded regions. */ void computeOcclusionBasedMasks( const Mat& leftDisp, const Mat& _rightDisp, Mat* occludedMask, Mat* nonOccludedMask, const Mat& leftUnknDispMask = Mat(), const Mat& rightUnknDispMask = Mat(), float dispThresh = EVAL_DISP_THRESH ) { if( !occludedMask && !nonOccludedMask ) return; checkDispMapsAndUnknDispMasks( leftDisp, _rightDisp, leftUnknDispMask, rightUnknDispMask ); Mat rightDisp; if( _rightDisp.empty() ) { if( !rightUnknDispMask.empty() ) CV_Error( CV_StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" ); rightDisp.create(leftDisp.size(), CV_32FC1); rightDisp.setTo(Scalar::all(0) ); for( int leftY = 0; leftY < leftDisp.rows; leftY++ ) { for( int leftX = 0; leftX < leftDisp.cols; leftX++ ) { if( !leftUnknDispMask.empty() && leftUnknDispMask.at(leftY,leftX) ) continue; float leftDispVal = leftDisp.at(leftY, leftX); int rightX = leftX - cvRound(leftDispVal), rightY = leftY; if( rightX >= 0) rightDisp.at(rightY,rightX) = max(rightDisp.at(rightY,rightX), leftDispVal); } } } else _rightDisp.copyTo(rightDisp); if( occludedMask ) { occludedMask->create(leftDisp.size(), CV_8UC1); occludedMask->setTo(Scalar::all(0) ); } if( nonOccludedMask ) { nonOccludedMask->create(leftDisp.size(), CV_8UC1); nonOccludedMask->setTo(Scalar::all(0) ); } for( int leftY = 0; leftY < leftDisp.rows; leftY++ ) { for( int leftX = 0; leftX < leftDisp.cols; leftX++ ) { if( !leftUnknDispMask.empty() && leftUnknDispMask.at(leftY,leftX) ) continue; float leftDispVal = leftDisp.at(leftY, leftX); int rightX = leftX - cvRound(leftDispVal), rightY = leftY; if( rightX < 0 && occludedMask ) occludedMask->at(leftY, leftX) = 255; else { if( !rightUnknDispMask.empty() && rightUnknDispMask.at(rightY,rightX) ) continue; float rightDispVal = rightDisp.at(rightY, rightX); if( rightDispVal > leftDispVal + dispThresh ) { if( occludedMask ) occludedMask->at(leftY, leftX) = 255; } else { if( nonOccludedMask ) nonOccludedMask->at(leftY, leftX) = 255; } } } } } /* Calculate depth discontinuty regions: pixels whose neiboring disparities differ by more than dispGap, dilated by window of width discontWidth. */ void computeDepthDiscontMask( const Mat& disp, Mat& depthDiscontMask, const Mat& unknDispMask = Mat(), float dispGap = EVAL_DISP_GAP, int discontWidth = EVAL_DISCONT_WIDTH ) { if( disp.empty() ) CV_Error( CV_StsBadArg, "disp is empty" ); if( disp.type() != CV_32FC1 ) CV_Error( CV_StsBadArg, "disp must have CV_32FC1 type" ); if( !unknDispMask.empty() ) checkTypeAndSizeOfMask( unknDispMask, disp.size() ); Mat curDisp; disp.copyTo( curDisp ); if( !unknDispMask.empty() ) curDisp.setTo( Scalar(numeric_limits::min()), unknDispMask ); Mat maxNeighbDisp; dilate( curDisp, maxNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) ); if( !unknDispMask.empty() ) curDisp.setTo( Scalar(numeric_limits::max()), unknDispMask ); Mat minNeighbDisp; erode( curDisp, minNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) ); depthDiscontMask = max( (Mat)(maxNeighbDisp-disp), (Mat)(disp-minNeighbDisp) ) > dispGap; if( !unknDispMask.empty() ) depthDiscontMask &= ~unknDispMask; dilate( depthDiscontMask, depthDiscontMask, Mat(discontWidth, discontWidth, CV_8UC1, Scalar(1)) ); } /* Get evaluation masks excluding a border. */ Mat getBorderedMask( Size maskSize, int border = EVAL_IGNORE_BORDER ) { CV_Assert( border >= 0 ); Mat mask(maskSize, CV_8UC1, Scalar(0)); int w = maskSize.width - 2*border, h = maskSize.height - 2*border; if( w < 0 || h < 0 ) mask.setTo(Scalar(0)); else mask( Rect(Point(border,border),Size(w,h)) ).setTo(Scalar(255)); return mask; } /* Calculate root-mean-squared error between the computed disparity map (computedDisp) and ground truth map (groundTruthDisp). */ float dispRMS( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask ) { checkTypeAndSizeOfDisp( groundTruthDisp, 0 ); Size sz = groundTruthDisp.size(); checkTypeAndSizeOfDisp( computedDisp, &sz ); int pointsCount = sz.height*sz.width; if( !mask.empty() ) { checkTypeAndSizeOfMask( mask, sz ); pointsCount = countNonZero(mask); } return 1.f/sqrt((float)pointsCount) * (float)norm(computedDisp, groundTruthDisp, NORM_L2, mask); } /* Calculate fraction of bad matching pixels. */ float badMatchPxlsFraction( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask, float _badThresh = EVAL_BAD_THRESH ) { int badThresh = cvRound(_badThresh); checkTypeAndSizeOfDisp( groundTruthDisp, 0 ); Size sz = groundTruthDisp.size(); checkTypeAndSizeOfDisp( computedDisp, &sz ); Mat badPxlsMap; absdiff( computedDisp, groundTruthDisp, badPxlsMap ); badPxlsMap = badPxlsMap > badThresh; int pointsCount = sz.height*sz.width; if( !mask.empty() ) { checkTypeAndSizeOfMask( mask, sz ); badPxlsMap = badPxlsMap & mask; pointsCount = countNonZero(mask); } return 1.f/pointsCount * countNonZero(badPxlsMap); } //===================== regression test for stereo matching algorithms ============================== const string ALGORITHMS_DIR = "stereomatching/algorithms/"; const string DATASETS_DIR = "stereomatching/datasets/"; const string DATASETS_FILE = "datasets.xml"; const string RUN_PARAMS_FILE = "_params.xml"; const string RESULT_FILE = "_res.xml"; const string LEFT_IMG_NAME = "im2.png"; const string RIGHT_IMG_NAME = "im6.png"; const string TRUE_LEFT_DISP_NAME = "disp2.png"; const string TRUE_RIGHT_DISP_NAME = "disp6.png"; string ERROR_PREFIXES[] = { "borderedAll", "borderedNoOccl", "borderedOccl", "borderedTextured", "borderedTextureless", "borderedDepthDiscont" }; // size of ERROR_KINDS_COUNT const string RMS_STR = "RMS"; const string BAD_PXLS_FRACTION_STR = "BadPxlsFraction"; class QualityEvalParams { public: QualityEvalParams() { setDefaults(); } QualityEvalParams( int _ignoreBorder ) { setDefaults(); ignoreBorder = _ignoreBorder; } void setDefaults() { badThresh = EVAL_BAD_THRESH; texturelessWidth = EVAL_TEXTURELESS_WIDTH; texturelessThresh = EVAL_TEXTURELESS_THRESH; dispThresh = EVAL_DISP_THRESH; dispGap = EVAL_DISP_GAP; discontWidth = EVAL_DISCONT_WIDTH; ignoreBorder = EVAL_IGNORE_BORDER; } float badThresh; int texturelessWidth; float texturelessThresh; float dispThresh; float dispGap; int discontWidth; int ignoreBorder; }; class CV_StereoMatchingTest : public cvtest::BaseTest { public: CV_StereoMatchingTest() { rmsEps.resize( ERROR_KINDS_COUNT, 0.01f ); fracEps.resize( ERROR_KINDS_COUNT, 1.e-6f ); } protected: // assumed that left image is a reference image virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg, Mat& leftDisp, Mat& rightDisp, int caseIdx ) = 0; // return ignored border width int readDatasetsParams( FileStorage& fs ); virtual int readRunParams( FileStorage& fs ); void writeErrors( const string& errName, const vector& errors, FileStorage* fs = 0 ); void readErrors( FileNode& fn, const string& errName, vector& errors ); int compareErrors( const vector& calcErrors, const vector& validErrors, const vector& eps, const string& errName ); int processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite, const Mat& leftImg, const Mat& rightImg, const Mat& trueLeftDisp, const Mat& trueRightDisp, const Mat& leftDisp, const Mat& rightDisp, const QualityEvalParams& qualityEvalParams ); void run( int ); vector rmsEps; vector fracEps; struct DatasetParams { int dispScaleFactor; int dispUnknVal; }; map datasetsParams; vector caseNames; vector caseDatasets; }; void CV_StereoMatchingTest::run(int) { string dataPath = ts->get_data_path(); string algorithmName = name; assert( !algorithmName.empty() ); if( dataPath.empty() ) { ts->printf( cvtest::TS::LOG, "dataPath is empty" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK ); return; } FileStorage datasetsFS( dataPath + DATASETS_DIR + DATASETS_FILE, FileStorage::READ ); int code = readDatasetsParams( datasetsFS ); if( code != cvtest::TS::OK ) { ts->set_failed_test_info( code ); return; } FileStorage runParamsFS( dataPath + ALGORITHMS_DIR + algorithmName + RUN_PARAMS_FILE, FileStorage::READ ); code = readRunParams( runParamsFS ); if( code != cvtest::TS::OK ) { ts->set_failed_test_info( code ); return; } string fullResultFilename = dataPath + ALGORITHMS_DIR + algorithmName + RESULT_FILE; FileStorage resFS( fullResultFilename, FileStorage::READ ); bool isWrite = true; // write or compare results if( resFS.isOpened() ) isWrite = false; else { resFS.open( fullResultFilename, FileStorage::WRITE ); if( !resFS.isOpened() ) { ts->printf( cvtest::TS::LOG, "file %s can not be read or written\n", fullResultFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK ); return; } resFS << "stereo_matching" << "{"; } int progress = 0, caseCount = (int)caseNames.size(); for( int ci = 0; ci < caseCount; ci++) { progress = update_progress( progress, ci, caseCount, 0 ); printf("progress: %d%%\n", progress); fflush(stdout); string datasetName = caseDatasets[ci]; string datasetFullDirName = dataPath + DATASETS_DIR + datasetName + "/"; Mat leftImg = imread(datasetFullDirName + LEFT_IMG_NAME); Mat rightImg = imread(datasetFullDirName + RIGHT_IMG_NAME); Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, 0); Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, 0); if( leftImg.empty() || rightImg.empty() || trueLeftDisp.empty() ) { ts->printf( cvtest::TS::LOG, "images or left ground-truth disparities of dataset %s can not be read", datasetName.c_str() ); code = cvtest::TS::FAIL_INVALID_TEST_DATA; continue; } int dispScaleFactor = datasetsParams[datasetName].dispScaleFactor; Mat tmp; trueLeftDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor ); trueLeftDisp = tmp; tmp.release(); if( !trueRightDisp.empty() ) trueRightDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor ); trueRightDisp = tmp; tmp.release(); Mat leftDisp, rightDisp; int ignBorder = max(runStereoMatchingAlgorithm(leftImg, rightImg, leftDisp, rightDisp, ci), EVAL_IGNORE_BORDER); leftDisp.convertTo( tmp, CV_32FC1 ); leftDisp = tmp; tmp.release(); rightDisp.convertTo( tmp, CV_32FC1 ); rightDisp = tmp; tmp.release(); int tempCode = processStereoMatchingResults( resFS, ci, isWrite, leftImg, rightImg, trueLeftDisp, trueRightDisp, leftDisp, rightDisp, QualityEvalParams(ignBorder)); code = tempCode==cvtest::TS::OK ? code : tempCode; } if( isWrite ) resFS << "}"; // "stereo_matching" ts->set_failed_test_info( code ); } void calcErrors( const Mat& leftImg, const Mat& /*rightImg*/, const Mat& trueLeftDisp, const Mat& trueRightDisp, const Mat& trueLeftUnknDispMask, const Mat& trueRightUnknDispMask, const Mat& calcLeftDisp, const Mat& /*calcRightDisp*/, vector& rms, vector& badPxlsFractions, const QualityEvalParams& qualityEvalParams ) { Mat texturelessMask, texturedMask; computeTextureBasedMasks( leftImg, &texturelessMask, &texturedMask, qualityEvalParams.texturelessWidth, qualityEvalParams.texturelessThresh ); Mat occludedMask, nonOccludedMask; computeOcclusionBasedMasks( trueLeftDisp, trueRightDisp, &occludedMask, &nonOccludedMask, trueLeftUnknDispMask, trueRightUnknDispMask, qualityEvalParams.dispThresh); Mat depthDiscontMask; computeDepthDiscontMask( trueLeftDisp, depthDiscontMask, trueLeftUnknDispMask, qualityEvalParams.dispGap, qualityEvalParams.discontWidth); Mat borderedKnownMask = getBorderedMask( leftImg.size(), qualityEvalParams.ignoreBorder ) & ~trueLeftUnknDispMask; nonOccludedMask &= borderedKnownMask; occludedMask &= borderedKnownMask; texturedMask &= nonOccludedMask; // & borderedKnownMask texturelessMask &= nonOccludedMask; // & borderedKnownMask depthDiscontMask &= nonOccludedMask; // & borderedKnownMask rms.resize(ERROR_KINDS_COUNT); rms[0] = dispRMS( calcLeftDisp, trueLeftDisp, borderedKnownMask ); rms[1] = dispRMS( calcLeftDisp, trueLeftDisp, nonOccludedMask ); rms[2] = dispRMS( calcLeftDisp, trueLeftDisp, occludedMask ); rms[3] = dispRMS( calcLeftDisp, trueLeftDisp, texturedMask ); rms[4] = dispRMS( calcLeftDisp, trueLeftDisp, texturelessMask ); rms[5] = dispRMS( calcLeftDisp, trueLeftDisp, depthDiscontMask ); badPxlsFractions.resize(ERROR_KINDS_COUNT); badPxlsFractions[0] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, borderedKnownMask, qualityEvalParams.badThresh ); badPxlsFractions[1] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, nonOccludedMask, qualityEvalParams.badThresh ); badPxlsFractions[2] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, occludedMask, qualityEvalParams.badThresh ); badPxlsFractions[3] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturedMask, qualityEvalParams.badThresh ); badPxlsFractions[4] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturelessMask, qualityEvalParams.badThresh ); badPxlsFractions[5] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, depthDiscontMask, qualityEvalParams.badThresh ); } int CV_StereoMatchingTest::processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite, const Mat& leftImg, const Mat& rightImg, const Mat& trueLeftDisp, const Mat& trueRightDisp, const Mat& leftDisp, const Mat& rightDisp, const QualityEvalParams& qualityEvalParams ) { // rightDisp is not used in current test virsion int code = cvtest::TS::OK; assert( fs.isOpened() ); assert( trueLeftDisp.type() == CV_32FC1 && trueRightDisp.type() == CV_32FC1 ); assert( leftDisp.type() == CV_32FC1 && rightDisp.type() == CV_32FC1 ); // get masks for unknown ground truth disparity values Mat leftUnknMask, rightUnknMask; DatasetParams params = datasetsParams[caseDatasets[caseIdx]]; absdiff( trueLeftDisp, Scalar(params.dispUnknVal), leftUnknMask ); leftUnknMask = leftUnknMask < numeric_limits::epsilon(); assert(leftUnknMask.type() == CV_8UC1); if( !trueRightDisp.empty() ) { absdiff( trueRightDisp, Scalar(params.dispUnknVal), rightUnknMask ); rightUnknMask = rightUnknMask < numeric_limits::epsilon(); assert(leftUnknMask.type() == CV_8UC1); } // calculate errors vector rmss, badPxlsFractions; calcErrors( leftImg, rightImg, trueLeftDisp, trueRightDisp, leftUnknMask, rightUnknMask, leftDisp, rightDisp, rmss, badPxlsFractions, qualityEvalParams ); if( isWrite ) { fs << caseNames[caseIdx] << "{"; cvWriteComment( fs.fs, RMS_STR.c_str(), 0 ); writeErrors( RMS_STR, rmss, &fs ); cvWriteComment( fs.fs, BAD_PXLS_FRACTION_STR.c_str(), 0 ); writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions, &fs ); fs << "}"; // datasetName } else // compare { ts->printf( cvtest::TS::LOG, "\nquality of case named %s\n", caseNames[caseIdx].c_str() ); ts->printf( cvtest::TS::LOG, "%s\n", RMS_STR.c_str() ); writeErrors( RMS_STR, rmss ); ts->printf( cvtest::TS::LOG, "%s\n", BAD_PXLS_FRACTION_STR.c_str() ); writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions ); FileNode fn = fs.getFirstTopLevelNode()[caseNames[caseIdx]]; vector validRmss, validBadPxlsFractions; readErrors( fn, RMS_STR, validRmss ); readErrors( fn, BAD_PXLS_FRACTION_STR, validBadPxlsFractions ); int tempCode = compareErrors( rmss, validRmss, rmsEps, RMS_STR ); code = tempCode==cvtest::TS::OK ? code : tempCode; tempCode = compareErrors( badPxlsFractions, validBadPxlsFractions, fracEps, BAD_PXLS_FRACTION_STR ); code = tempCode==cvtest::TS::OK ? code : tempCode; } return code; } int CV_StereoMatchingTest::readDatasetsParams( FileStorage& fs ) { if( !fs.isOpened() ) { ts->printf( cvtest::TS::LOG, "datasetsParams can not be read " ); return cvtest::TS::FAIL_INVALID_TEST_DATA; } datasetsParams.clear(); FileNode fn = fs.getFirstTopLevelNode(); assert(fn.isSeq()); for( int i = 0; i < (int)fn.size(); i+=3 ) { string name = fn[i]; DatasetParams params; string sf = fn[i+1]; params.dispScaleFactor = atoi(sf.c_str()); string uv = fn[i+2]; params.dispUnknVal = atoi(uv.c_str()); datasetsParams[name] = params; } return cvtest::TS::OK; } int CV_StereoMatchingTest::readRunParams( FileStorage& fs ) { if( !fs.isOpened() ) { ts->printf( cvtest::TS::LOG, "runParams can not be read " ); return cvtest::TS::FAIL_INVALID_TEST_DATA; } caseNames.clear();; caseDatasets.clear(); return cvtest::TS::OK; } void CV_StereoMatchingTest::writeErrors( const string& errName, const vector& errors, FileStorage* fs ) { assert( (int)errors.size() == ERROR_KINDS_COUNT ); vector::const_iterator it = errors.begin(); if( fs ) for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it ) *fs << ERROR_PREFIXES[i] + errName << *it; else for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it ) ts->printf( cvtest::TS::LOG, "%s = %f\n", string(ERROR_PREFIXES[i]+errName).c_str(), *it ); } void CV_StereoMatchingTest::readErrors( FileNode& fn, const string& errName, vector& errors ) { errors.resize( ERROR_KINDS_COUNT ); vector::iterator it = errors.begin(); for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it ) fn[ERROR_PREFIXES[i]+errName] >> *it; } int CV_StereoMatchingTest::compareErrors( const vector& calcErrors, const vector& validErrors, const vector& eps, const string& errName ) { assert( (int)calcErrors.size() == ERROR_KINDS_COUNT ); assert( (int)validErrors.size() == ERROR_KINDS_COUNT ); assert( (int)eps.size() == ERROR_KINDS_COUNT ); vector::const_iterator calcIt = calcErrors.begin(), validIt = validErrors.begin(), epsIt = eps.begin(); bool ok = true; for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++calcIt, ++validIt, ++epsIt ) if( *calcIt - *validIt > *epsIt ) { ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%f; calc=%f)\n", string(ERROR_PREFIXES[i]+errName).c_str(), *validIt, *calcIt ); ok = false; } return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY; } //----------------------------------- StereoBM test ----------------------------------------------------- class CV_StereoBMTest : public CV_StereoMatchingTest { public: CV_StereoBMTest() { name = "stereobm"; fill(rmsEps.begin(), rmsEps.end(), 0.4f); fill(fracEps.begin(), fracEps.end(), 0.022f); } protected: struct RunParams { int ndisp; int winSize; }; vector caseRunParams; virtual int readRunParams( FileStorage& fs ) { int code = CV_StereoMatchingTest::readRunParams( fs ); FileNode fn = fs.getFirstTopLevelNode(); assert(fn.isSeq()); for( int i = 0; i < (int)fn.size(); i+=4 ) { string caseName = fn[i], datasetName = fn[i+1]; RunParams params; string ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str()); string winSize = fn[i+3]; params.winSize = atoi(winSize.c_str()); caseNames.push_back( caseName ); caseDatasets.push_back( datasetName ); caseRunParams.push_back( params ); } return code; } virtual int runStereoMatchingAlgorithm( const Mat& _leftImg, const Mat& _rightImg, Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx ) { RunParams params = caseRunParams[caseIdx]; assert( params.ndisp%16 == 0 ); assert( _leftImg.type() == CV_8UC3 && _rightImg.type() == CV_8UC3 ); Mat leftImg; cvtColor( _leftImg, leftImg, CV_BGR2GRAY ); Mat rightImg; cvtColor( _rightImg, rightImg, CV_BGR2GRAY ); StereoBM bm( StereoBM::BASIC_PRESET, params.ndisp, params.winSize ); bm( leftImg, rightImg, leftDisp, CV_32F ); return params.winSize/2; } }; //----------------------------------- StereoSGBM test ----------------------------------------------------- class CV_StereoSGBMTest : public CV_StereoMatchingTest { public: CV_StereoSGBMTest() { name = "stereosgbm"; fill(rmsEps.begin(), rmsEps.end(), 0.25f); fill(fracEps.begin(), fracEps.end(), 0.01f); } protected: struct RunParams { int ndisp; int winSize; bool fullDP; }; vector caseRunParams; virtual int readRunParams( FileStorage& fs ) { int code = CV_StereoMatchingTest::readRunParams(fs); FileNode fn = fs.getFirstTopLevelNode(); assert(fn.isSeq()); for( int i = 0; i < (int)fn.size(); i+=5 ) { string caseName = fn[i], datasetName = fn[i+1]; RunParams params; string ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str()); string winSize = fn[i+3]; params.winSize = atoi(winSize.c_str()); string fullDP = fn[i+4]; params.fullDP = atoi(fullDP.c_str()) == 0 ? false : true; caseNames.push_back( caseName ); caseDatasets.push_back( datasetName ); caseRunParams.push_back( params ); } return code; } virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg, Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx ) { RunParams params = caseRunParams[caseIdx]; assert( params.ndisp%16 == 0 ); StereoSGBM sgbm( 0, params.ndisp, params.winSize, 10*params.winSize*params.winSize, 40*params.winSize*params.winSize, 1, 63, 10, 100, 32, params.fullDP ); sgbm( leftImg, rightImg, leftDisp ); assert( leftDisp.type() == CV_16SC1 ); leftDisp/=16; return 0; } }; TEST(Calib3d_StereoBM, regression) { CV_StereoBMTest test; test.safe_run(); } TEST(Calib3d_StereoSGBM, regression) { CV_StereoSGBMTest test; test.safe_run(); }