/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of OpenCV Foundation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { struct MinAreaState { int bottom; int left; float height; float width; float base_a; float base_b; }; enum { CALIPERS_MAXHEIGHT=0, CALIPERS_MINAREARECT=1, CALIPERS_MAXDIST=2 }; /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: rotatingCalipers // Purpose: // Rotating calipers algorithm with some applications // // Context: // Parameters: // points - convex hull vertices ( any orientation ) // n - number of vertices // mode - concrete application of algorithm // can be CV_CALIPERS_MAXDIST or // CV_CALIPERS_MINAREARECT // left, bottom, right, top - indexes of extremal points // out - output info. // In case CV_CALIPERS_MAXDIST it points to float value - // maximal height of polygon. // In case CV_CALIPERS_MINAREARECT // ((CvPoint2D32f*)out)[0] - corner // ((CvPoint2D32f*)out)[1] - vector1 // ((CvPoint2D32f*)out)[0] - corner2 // // ^ // | // vector2 | // | // |____________\ // corner / // vector1 // // Returns: // Notes: //F*/ /* we will use usual cartesian coordinates */ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out ) { float minarea = FLT_MAX; float max_dist = 0; char buffer[32] = {}; int i, k; AutoBuffer abuf(n*3); float* inv_vect_length = abuf; Point2f* vect = (Point2f*)(inv_vect_length + n); int left = 0, bottom = 0, right = 0, top = 0; int seq[4] = { -1, -1, -1, -1 }; /* rotating calipers sides will always have coordinates (a,b) (-b,a) (-a,-b) (b, -a) */ /* this is a first base bector (a,b) initialized by (1,0) */ float orientation = 0; float base_a; float base_b = 0; float left_x, right_x, top_y, bottom_y; Point2f pt0 = points[0]; left_x = right_x = pt0.x; top_y = bottom_y = pt0.y; for( i = 0; i < n; i++ ) { double dx, dy; if( pt0.x < left_x ) left_x = pt0.x, left = i; if( pt0.x > right_x ) right_x = pt0.x, right = i; if( pt0.y > top_y ) top_y = pt0.y, top = i; if( pt0.y < bottom_y ) bottom_y = pt0.y, bottom = i; Point2f pt = points[(i+1) & (i+1 < n ? -1 : 0)]; dx = pt.x - pt0.x; dy = pt.y - pt0.y; vect[i].x = (float)dx; vect[i].y = (float)dy; inv_vect_length[i] = (float)(1./std::sqrt(dx*dx + dy*dy)); pt0 = pt; } // find convex hull orientation { double ax = vect[n-1].x; double ay = vect[n-1].y; for( i = 0; i < n; i++ ) { double bx = vect[i].x; double by = vect[i].y; double convexity = ax * by - ay * bx; if( convexity != 0 ) { orientation = (convexity > 0) ? 1.f : (-1.f); break; } ax = bx; ay = by; } CV_Assert( orientation != 0 ); } base_a = orientation; /*****************************************************************************************/ /* init calipers position */ seq[0] = bottom; seq[1] = right; seq[2] = top; seq[3] = left; /*****************************************************************************************/ /* Main loop - evaluate angles and rotate calipers */ /* all of edges will be checked while rotating calipers by 90 degrees */ for( k = 0; k < n; k++ ) { /* sinus of minimal angle */ /*float sinus;*/ /* compute cosine of angle between calipers side and polygon edge */ /* dp - dot product */ float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y; float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y; float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y; float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y; float cosalpha = dp0 * inv_vect_length[seq[0]]; float maxcos = cosalpha; /* number of calipers edges, that has minimal angle with edge */ int main_element = 0; /* choose minimal angle */ cosalpha = dp1 * inv_vect_length[seq[1]]; maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos; cosalpha = dp2 * inv_vect_length[seq[2]]; maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos; cosalpha = dp3 * inv_vect_length[seq[3]]; maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos; /*rotate calipers*/ { //get next base int pindex = seq[main_element]; float lead_x = vect[pindex].x*inv_vect_length[pindex]; float lead_y = vect[pindex].y*inv_vect_length[pindex]; switch( main_element ) { case 0: base_a = lead_x; base_b = lead_y; break; case 1: base_a = lead_y; base_b = -lead_x; break; case 2: base_a = -lead_x; base_b = -lead_y; break; case 3: base_a = -lead_y; base_b = lead_x; break; default: CV_Error(CV_StsError, "main_element should be 0, 1, 2 or 3"); } } /* change base point of main edge */ seq[main_element] += 1; seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element]; switch (mode) { case CALIPERS_MAXHEIGHT: { /* now main element lies on edge alligned to calipers side */ /* find opposite element i.e. transform */ /* 0->2, 1->3, 2->0, 3->1 */ int opposite_el = main_element ^ 2; float dx = points[seq[opposite_el]].x - points[seq[main_element]].x; float dy = points[seq[opposite_el]].y - points[seq[main_element]].y; float dist; if( main_element & 1 ) dist = (float)fabs(dx * base_a + dy * base_b); else dist = (float)fabs(dx * (-base_b) + dy * base_a); if( dist > max_dist ) max_dist = dist; } break; case CALIPERS_MINAREARECT: /* find area of rectangle */ { float height; float area; /* find vector left-right */ float dx = points[seq[1]].x - points[seq[3]].x; float dy = points[seq[1]].y - points[seq[3]].y; /* dotproduct */ float width = dx * base_a + dy * base_b; /* find vector left-right */ dx = points[seq[2]].x - points[seq[0]].x; dy = points[seq[2]].y - points[seq[0]].y; /* dotproduct */ height = -dx * base_b + dy * base_a; area = width * height; if( area <= minarea ) { float *buf = (float *) buffer; minarea = area; /* leftist point */ ((int *) buf)[0] = seq[3]; buf[1] = base_a; buf[2] = width; buf[3] = base_b; buf[4] = height; /* bottom point */ ((int *) buf)[5] = seq[0]; buf[6] = area; } } break; } /*switch */ } /* for */ switch (mode) { case CALIPERS_MINAREARECT: { float *buf = (float *) buffer; float A1 = buf[1]; float B1 = buf[3]; float A2 = -buf[3]; float B2 = buf[1]; float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1; float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2; float idet = 1.f / (A1 * B2 - A2 * B1); float px = (C1 * B2 - C2 * B1) * idet; float py = (A1 * C2 - A2 * C1) * idet; out[0] = px; out[1] = py; out[2] = A1 * buf[2]; out[3] = B1 * buf[2]; out[4] = A2 * buf[4]; out[5] = B2 * buf[4]; } break; case CALIPERS_MAXHEIGHT: { out[0] = max_dist; } break; } } } cv::RotatedRect cv::minAreaRect( InputArray _points ) { Mat hull; Point2f out[3]; RotatedRect box; convexHull(_points, hull, true, true); if( hull.depth() != CV_32F ) { Mat temp; hull.convertTo(temp, CV_32F); hull = temp; } int n = hull.checkVector(2); const Point2f* hpoints = (const Point2f*)hull.data; if( n > 2 ) { rotatingCalipers( hpoints, n, CALIPERS_MINAREARECT, (float*)out ); box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f; box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f; box.size.width = (float)std::sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y); box.size.height = (float)std::sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y); box.angle = (float)atan2( (double)out[1].y, (double)out[1].x ); } else if( n == 2 ) { box.center.x = (hpoints[0].x + hpoints[1].x)*0.5f; box.center.y = (hpoints[0].y + hpoints[1].y)*0.5f; double dx = hpoints[1].x - hpoints[0].x; double dy = hpoints[1].y - hpoints[0].y; box.size.width = (float)std::sqrt(dx*dx + dy*dy); box.size.height = 0; box.angle = (float)atan2( dy, dx ); } else { if( n == 1 ) box.center = hpoints[0]; } box.angle = (float)(box.angle*180/CV_PI); return box; } CV_IMPL CvBox2D cvMinAreaRect2( const CvArr* array, CvMemStorage* /*storage*/ ) { cv::AutoBuffer abuf; cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf); cv::RotatedRect rr = cv::minAreaRect(points); return (CvBox2D)rr; } void cv::boxPoints(cv::RotatedRect box, OutputArray _pts) { _pts.create(4, 2, CV_32F); Mat pts = _pts.getMat(); box.points((Point2f*)pts.data); }