/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/highgui/highgui.hpp" using namespace std; using namespace cv; const string FEATURES2D_DIR = "features2d"; const string IMAGE_FILENAME = "tsukuba.png"; static Mat generateHomography(float angle) { float angleRadian = angle * CV_PI / 180.; Mat H = Mat::eye(3, 3, CV_32FC1); H.at(0,0) = H.at(1,1) = std::cos(angleRadian); H.at(0,1) = -std::sin(angleRadian); H.at(1,0) = std::sin(angleRadian); return H; } static Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask) { int diag = std::sqrt(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows); Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up LUShift.at(0,2) = -srcImage.cols/2; LUShift.at(1,2) = -srcImage.rows/2; Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down RDShift.at(0,2) = diag/2; RDShift.at(1,2) = diag/2; Size sz(diag, diag); Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255)); Mat H = RDShift * generateHomography(angle) * LUShift; warpPerspective(srcImage, dstImage, H, sz); warpPerspective(srcMask, dstMask, H, sz); return H; } static float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1) { float c = norm(p0 - p1), sqr_c = c * c; float sqr_r0 = r0 * r0; float sqr_r1 = r1 * r1; if(r0 + r1 <= c) return 0; float minR = std::min(r0, r1); float maxR = std::max(r0, r1); if(c + minR <= maxR) return CV_PI * minR * minR; float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c); float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c); float A0 = 2 * acos(cos_halfA0); float A1 = 2 * acos(cos_halfA1); return 0.5 * sqr_r0 * (A0 - sin(A0)) + 0.5 * sqr_r1 * (A1 - sin(A1)); } static float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1) { float intersectArea = calcIntersectArea(p0, r0, p1, r1); float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea; return intersectArea / unionArea; } class DetectorRotatationInvarianceTest : public cvtest::BaseTest { public: DetectorRotatationInvarianceTest(const Ptr& _featureDetector, float _minInliersRatio, float _minAngleInliersRatio) : featureDetector(_featureDetector), minInliersRatio(_minInliersRatio), minAngleInliersRatio(_minAngleInliersRatio) { CV_Assert(!featureDetector.empty()); } protected: void run(int) { const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; // Read test data Mat image0 = imread(imageFilename), image1, mask1; if(image0.empty()) { ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } vector keypoints0; featureDetector->detect(image0, keypoints0); CV_Assert(keypoints0.size() > 15); const int maxAngle = 360, angleStep = 10; for(int angle = 0; angle < maxAngle; angle += angleStep) { Mat H = rotateImage(image0, angle, image1, mask1); vector keypoints1; featureDetector->detect(image1, keypoints1, mask1); vector points0; KeyPoint::convert(keypoints0, points0); Mat points0t; perspectiveTransform(Mat(points0), points0t, H); int inliersCount = 0; int angleInliersCount = 0; for(size_t m0 = 0; m0 < points0t.total(); m0++) { int nearestPointIndex = -1; float maxIntersectRatio = 0.f; const float r0 = 0.5f * keypoints0[m0].size; for(size_t m1 = 0; m1 < keypoints1.size(); m1++) { float r1 = 0.5f * keypoints1[m1].size; float intersectRatio = calcIntersectRatio(points0t.at(m0), r0, keypoints1[m1].pt, r1); if(intersectRatio > maxIntersectRatio) { maxIntersectRatio = intersectRatio; nearestPointIndex = m1; } } if(maxIntersectRatio > 0.5f) { inliersCount++; const float maxAngleDiff = 3.f; // grad float angle0 = keypoints0[m0].angle; float angle1 = keypoints1[nearestPointIndex].angle; if(angle0 == -1 || angle1 == -1) CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n"); CV_Assert(angle0 >= 0.f && angle0 < 360.f); CV_Assert(angle1 >= 0.f && angle1 < 360.f); float rotAngle0 = angle0 + angle; if(rotAngle0 >= 360.f) rotAngle0 -= 360.f; float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1); angleDiff = std::min(angleDiff, static_cast(2. * CV_PI - angleDiff)); bool isAngleCorrect = angleDiff < maxAngleDiff; if(isAngleCorrect) angleInliersCount++; } } float inliersRatio = static_cast(inliersCount) / keypoints0.size(); if(inliersRatio < minInliersRatio) { ts->printf(cvtest::TS::LOG, "Incorrect inliersRatio: curr = %f, min = %f.\n", inliersRatio, minInliersRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } if(inliersCount) { float angleInliersRatio = static_cast(angleInliersCount) / inliersCount; if(angleInliersRatio < minAngleInliersRatio) { ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n", angleInliersRatio, minAngleInliersRatio); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); return; } } // std::cout << "inliersRatio - " << inliersRatio // << " - angleInliersRatio " << static_cast(angleInliersCount) / inliersCount << std::endl; } ts->set_failed_test_info( cvtest::TS::OK ); } Ptr featureDetector; float minInliersRatio; float minAngleInliersRatio; }; // Tests registration TEST(Features2d_RotationInvariance_Detector_SURF, regression) { DetectorRotatationInvarianceTest test(Algorithm::create("Feature2D.SURF"), 0.60f, 0.94f); test.safe_run(); } TEST(Features2d_RotationInvariance_Detector_SIFT, regression) { DetectorRotatationInvarianceTest test(Algorithm::create("Feature2D.SIFT"), 0.76f, 0.99f); test.safe_run(); }