/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ... // // */ #include "precomp.hpp" #include "opencl_kernels.hpp" namespace cv { struct NOP {}; #if CV_SSE2 #define FUNCTOR_TEMPLATE(name) \ template struct name {} FUNCTOR_TEMPLATE(VLoadStore128); FUNCTOR_TEMPLATE(VLoadStore64); FUNCTOR_TEMPLATE(VLoadStore128Aligned); #endif template void vBinOp(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz) { #if CV_SSE2 VOp vop; #endif Op op; for( ; sz.height--; src1 += step1/sizeof(src1[0]), src2 += step2/sizeof(src2[0]), dst += step/sizeof(dst[0]) ) { int x = 0; #if CV_SSE2 if( USE_SSE2 ) { for( ; x <= sz.width - 32/(int)sizeof(T); x += 32/sizeof(T) ) { typename VLoadStore128::reg_type r0 = VLoadStore128::load(src1 + x ); typename VLoadStore128::reg_type r1 = VLoadStore128::load(src1 + x + 16/sizeof(T)); r0 = vop(r0, VLoadStore128::load(src2 + x )); r1 = vop(r1, VLoadStore128::load(src2 + x + 16/sizeof(T))); VLoadStore128::store(dst + x , r0); VLoadStore128::store(dst + x + 16/sizeof(T), r1); } } #endif #if CV_SSE2 if( USE_SSE2 ) { for( ; x <= sz.width - 8/(int)sizeof(T); x += 8/sizeof(T) ) { typename VLoadStore64::reg_type r = VLoadStore64::load(src1 + x); r = vop(r, VLoadStore64::load(src2 + x)); VLoadStore64::store(dst + x, r); } } #endif #if CV_ENABLE_UNROLLED for( ; x <= sz.width - 4; x += 4 ) { T v0 = op(src1[x], src2[x]); T v1 = op(src1[x+1], src2[x+1]); dst[x] = v0; dst[x+1] = v1; v0 = op(src1[x+2], src2[x+2]); v1 = op(src1[x+3], src2[x+3]); dst[x+2] = v0; dst[x+3] = v1; } #endif for( ; x < sz.width; x++ ) dst[x] = op(src1[x], src2[x]); } } template void vBinOp32(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz) { #if CV_SSE2 Op32 op32; #endif Op op; for( ; sz.height--; src1 += step1/sizeof(src1[0]), src2 += step2/sizeof(src2[0]), dst += step/sizeof(dst[0]) ) { int x = 0; #if CV_SSE2 if( USE_SSE2 ) { if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 ) { for( ; x <= sz.width - 8; x += 8 ) { typename VLoadStore128Aligned::reg_type r0 = VLoadStore128Aligned::load(src1 + x ); typename VLoadStore128Aligned::reg_type r1 = VLoadStore128Aligned::load(src1 + x + 4); r0 = op32(r0, VLoadStore128Aligned::load(src2 + x )); r1 = op32(r1, VLoadStore128Aligned::load(src2 + x + 4)); VLoadStore128Aligned::store(dst + x , r0); VLoadStore128Aligned::store(dst + x + 4, r1); } } } #endif #if CV_SSE2 if( USE_SSE2 ) { for( ; x <= sz.width - 8; x += 8 ) { typename VLoadStore128::reg_type r0 = VLoadStore128::load(src1 + x ); typename VLoadStore128::reg_type r1 = VLoadStore128::load(src1 + x + 4); r0 = op32(r0, VLoadStore128::load(src2 + x )); r1 = op32(r1, VLoadStore128::load(src2 + x + 4)); VLoadStore128::store(dst + x , r0); VLoadStore128::store(dst + x + 4, r1); } } #endif #if CV_ENABLE_UNROLLED for( ; x <= sz.width - 4; x += 4 ) { T v0 = op(src1[x], src2[x]); T v1 = op(src1[x+1], src2[x+1]); dst[x] = v0; dst[x+1] = v1; v0 = op(src1[x+2], src2[x+2]); v1 = op(src1[x+3], src2[x+3]); dst[x+2] = v0; dst[x+3] = v1; } #endif for( ; x < sz.width; x++ ) dst[x] = op(src1[x], src2[x]); } } template void vBinOp64(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz) { #if CV_SSE2 Op64 op64; #endif Op op; for( ; sz.height--; src1 += step1/sizeof(src1[0]), src2 += step2/sizeof(src2[0]), dst += step/sizeof(dst[0]) ) { int x = 0; #if CV_SSE2 if( USE_SSE2 ) { if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 ) { for( ; x <= sz.width - 4; x += 4 ) { typename VLoadStore128Aligned::reg_type r0 = VLoadStore128Aligned::load(src1 + x ); typename VLoadStore128Aligned::reg_type r1 = VLoadStore128Aligned::load(src1 + x + 2); r0 = op64(r0, VLoadStore128Aligned::load(src2 + x )); r1 = op64(r1, VLoadStore128Aligned::load(src2 + x + 2)); VLoadStore128Aligned::store(dst + x , r0); VLoadStore128Aligned::store(dst + x + 2, r1); } } } #endif for( ; x <= sz.width - 4; x += 4 ) { T v0 = op(src1[x], src2[x]); T v1 = op(src1[x+1], src2[x+1]); dst[x] = v0; dst[x+1] = v1; v0 = op(src1[x+2], src2[x+2]); v1 = op(src1[x+3], src2[x+3]); dst[x+2] = v0; dst[x+3] = v1; } for( ; x < sz.width; x++ ) dst[x] = op(src1[x], src2[x]); } } #if CV_SSE2 #define FUNCTOR_LOADSTORE_CAST(name, template_arg, register_type, load_body, store_body)\ template <> \ struct name{ \ typedef register_type reg_type; \ static reg_type load(const template_arg * p) { return load_body ((const reg_type *)p); } \ static void store(template_arg * p, reg_type v) { store_body ((reg_type *)p, v); } \ } #define FUNCTOR_LOADSTORE(name, template_arg, register_type, load_body, store_body)\ template <> \ struct name{ \ typedef register_type reg_type; \ static reg_type load(const template_arg * p) { return load_body (p); } \ static void store(template_arg * p, reg_type v) { store_body (p, v); } \ } #define FUNCTOR_CLOSURE_2arg(name, template_arg, body)\ template<> \ struct name \ { \ VLoadStore128::reg_type operator()( \ const VLoadStore128::reg_type & a, \ const VLoadStore128::reg_type & b) const \ { \ body; \ } \ } #define FUNCTOR_CLOSURE_1arg(name, template_arg, body)\ template<> \ struct name \ { \ VLoadStore128::reg_type operator()( \ const VLoadStore128::reg_type & a, \ const VLoadStore128::reg_type & ) const \ { \ body; \ } \ } FUNCTOR_LOADSTORE_CAST(VLoadStore128, uchar, __m128i, _mm_loadu_si128, _mm_storeu_si128); FUNCTOR_LOADSTORE_CAST(VLoadStore128, schar, __m128i, _mm_loadu_si128, _mm_storeu_si128); FUNCTOR_LOADSTORE_CAST(VLoadStore128, ushort, __m128i, _mm_loadu_si128, _mm_storeu_si128); FUNCTOR_LOADSTORE_CAST(VLoadStore128, short, __m128i, _mm_loadu_si128, _mm_storeu_si128); FUNCTOR_LOADSTORE_CAST(VLoadStore128, int, __m128i, _mm_loadu_si128, _mm_storeu_si128); FUNCTOR_LOADSTORE( VLoadStore128, float, __m128 , _mm_loadu_ps , _mm_storeu_ps ); FUNCTOR_LOADSTORE( VLoadStore128, double, __m128d, _mm_loadu_pd , _mm_storeu_pd ); FUNCTOR_LOADSTORE_CAST(VLoadStore64, uchar, __m128i, _mm_loadl_epi64, _mm_storel_epi64); FUNCTOR_LOADSTORE_CAST(VLoadStore64, schar, __m128i, _mm_loadl_epi64, _mm_storel_epi64); FUNCTOR_LOADSTORE_CAST(VLoadStore64, ushort, __m128i, _mm_loadl_epi64, _mm_storel_epi64); FUNCTOR_LOADSTORE_CAST(VLoadStore64, short, __m128i, _mm_loadl_epi64, _mm_storel_epi64); FUNCTOR_LOADSTORE_CAST(VLoadStore128Aligned, int, __m128i, _mm_load_si128, _mm_store_si128); FUNCTOR_LOADSTORE( VLoadStore128Aligned, float, __m128 , _mm_load_ps , _mm_store_ps ); FUNCTOR_LOADSTORE( VLoadStore128Aligned, double, __m128d, _mm_load_pd , _mm_store_pd ); FUNCTOR_TEMPLATE(VAdd); FUNCTOR_CLOSURE_2arg(VAdd, uchar, return _mm_adds_epu8 (a, b)); FUNCTOR_CLOSURE_2arg(VAdd, schar, return _mm_adds_epi8 (a, b)); FUNCTOR_CLOSURE_2arg(VAdd, ushort, return _mm_adds_epu16(a, b)); FUNCTOR_CLOSURE_2arg(VAdd, short, return _mm_adds_epi16(a, b)); FUNCTOR_CLOSURE_2arg(VAdd, int, return _mm_add_epi32 (a, b)); FUNCTOR_CLOSURE_2arg(VAdd, float, return _mm_add_ps (a, b)); FUNCTOR_CLOSURE_2arg(VAdd, double, return _mm_add_pd (a, b)); FUNCTOR_TEMPLATE(VSub); FUNCTOR_CLOSURE_2arg(VSub, uchar, return _mm_subs_epu8 (a, b)); FUNCTOR_CLOSURE_2arg(VSub, schar, return _mm_subs_epi8 (a, b)); FUNCTOR_CLOSURE_2arg(VSub, ushort, return _mm_subs_epu16(a, b)); FUNCTOR_CLOSURE_2arg(VSub, short, return _mm_subs_epi16(a, b)); FUNCTOR_CLOSURE_2arg(VSub, int, return _mm_sub_epi32 (a, b)); FUNCTOR_CLOSURE_2arg(VSub, float, return _mm_sub_ps (a, b)); FUNCTOR_CLOSURE_2arg(VSub, double, return _mm_sub_pd (a, b)); FUNCTOR_TEMPLATE(VMin); FUNCTOR_CLOSURE_2arg(VMin, uchar, return _mm_min_epu8(a, b)); FUNCTOR_CLOSURE_2arg(VMin, schar, __m128i m = _mm_cmpgt_epi8(a, b); return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m)); ); FUNCTOR_CLOSURE_2arg(VMin, ushort, return _mm_subs_epu16(a, _mm_subs_epu16(a, b))); FUNCTOR_CLOSURE_2arg(VMin, short, return _mm_min_epi16(a, b)); FUNCTOR_CLOSURE_2arg(VMin, int, __m128i m = _mm_cmpgt_epi32(a, b); return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m)); ); FUNCTOR_CLOSURE_2arg(VMin, float, return _mm_min_ps(a, b)); FUNCTOR_CLOSURE_2arg(VMin, double, return _mm_min_pd(a, b)); FUNCTOR_TEMPLATE(VMax); FUNCTOR_CLOSURE_2arg(VMax, uchar, return _mm_max_epu8(a, b)); FUNCTOR_CLOSURE_2arg(VMax, schar, __m128i m = _mm_cmpgt_epi8(b, a); return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m)); ); FUNCTOR_CLOSURE_2arg(VMax, ushort, return _mm_adds_epu16(_mm_subs_epu16(a, b), b)); FUNCTOR_CLOSURE_2arg(VMax, short, return _mm_max_epi16(a, b)); FUNCTOR_CLOSURE_2arg(VMax, int, __m128i m = _mm_cmpgt_epi32(b, a); return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m)); ); FUNCTOR_CLOSURE_2arg(VMax, float, return _mm_max_ps(a, b)); FUNCTOR_CLOSURE_2arg(VMax, double, return _mm_max_pd(a, b)); static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff }; static int CV_DECL_ALIGNED(16) v64f_absmask[] = { 0xffffffff, 0x7fffffff, 0xffffffff, 0x7fffffff }; FUNCTOR_TEMPLATE(VAbsDiff); FUNCTOR_CLOSURE_2arg(VAbsDiff, uchar, return _mm_add_epi8(_mm_subs_epu8(a, b), _mm_subs_epu8(b, a)); ); FUNCTOR_CLOSURE_2arg(VAbsDiff, schar, __m128i d = _mm_subs_epi8(a, b); __m128i m = _mm_cmpgt_epi8(b, a); return _mm_subs_epi8(_mm_xor_si128(d, m), m); ); FUNCTOR_CLOSURE_2arg(VAbsDiff, ushort, return _mm_add_epi16(_mm_subs_epu16(a, b), _mm_subs_epu16(b, a)); ); FUNCTOR_CLOSURE_2arg(VAbsDiff, short, __m128i M = _mm_max_epi16(a, b); __m128i m = _mm_min_epi16(a, b); return _mm_subs_epi16(M, m); ); FUNCTOR_CLOSURE_2arg(VAbsDiff, int, __m128i d = _mm_sub_epi32(a, b); __m128i m = _mm_cmpgt_epi32(b, a); return _mm_sub_epi32(_mm_xor_si128(d, m), m); ); FUNCTOR_CLOSURE_2arg(VAbsDiff, float, return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask); ); FUNCTOR_CLOSURE_2arg(VAbsDiff, double, return _mm_and_pd(_mm_sub_pd(a,b), *(const __m128d*)v64f_absmask); ); FUNCTOR_TEMPLATE(VAnd); FUNCTOR_CLOSURE_2arg(VAnd, uchar, return _mm_and_si128(a, b)); FUNCTOR_TEMPLATE(VOr); FUNCTOR_CLOSURE_2arg(VOr , uchar, return _mm_or_si128 (a, b)); FUNCTOR_TEMPLATE(VXor); FUNCTOR_CLOSURE_2arg(VXor, uchar, return _mm_xor_si128(a, b)); FUNCTOR_TEMPLATE(VNot); FUNCTOR_CLOSURE_1arg(VNot, uchar, return _mm_xor_si128(_mm_set1_epi32(-1), a)); #endif #if CV_SSE2 #define IF_SIMD(op) op #else #define IF_SIMD(op) NOP #endif template<> inline uchar OpAdd::operator ()(uchar a, uchar b) const { return CV_FAST_CAST_8U(a + b); } template<> inline uchar OpSub::operator ()(uchar a, uchar b) const { return CV_FAST_CAST_8U(a - b); } template struct OpAbsDiff { typedef T type1; typedef T type2; typedef T rtype; T operator()(T a, T b) const { return (T)std::abs(a - b); } }; template<> inline short OpAbsDiff::operator ()(short a, short b) const { return saturate_cast(std::abs(a - b)); } template<> inline schar OpAbsDiff::operator ()(schar a, schar b) const { return saturate_cast(std::abs(a - b)); } template struct OpAbsDiffS { typedef T type1; typedef WT type2; typedef T rtype; T operator()(T a, WT b) const { return saturate_cast(std::abs(a - b)); } }; template struct OpAnd { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T b ) const { return a & b; } }; template struct OpOr { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T b ) const { return a | b; } }; template struct OpXor { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T b ) const { return a ^ b; } }; template struct OpNot { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T ) const { return ~a; } }; #if (ARITHM_USE_IPP == 1) static inline void fixSteps(Size sz, size_t elemSize, size_t& step1, size_t& step2, size_t& step) { if( sz.height == 1 ) step1 = step2 = step = sz.width*elemSize; } #endif static void add8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAdd_8u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz), 0)) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz)); } static void add8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz); } static void add16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAdd_16u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz), 0)) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz)); } static void add16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAdd_16s_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz), 0)) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz)); } static void add32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* ) { vBinOp32, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz); } static void add32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAdd_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp32, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz)); } static void add64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* ) { vBinOp64, IF_SIMD(VAdd)>(src1, step1, src2, step2, dst, step, sz); } static void sub8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiSub_8u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, ippiSize(sz), 0)) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz)); } static void sub8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz); } static void sub16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiSub_16u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, ippiSize(sz), 0)) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz)); } static void sub16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiSub_16s_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, ippiSize(sz), 0)) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz)); } static void sub32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* ) { vBinOp32, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz); } static void sub32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiSub_32f_C1R(src2, (int)step2, src1, (int)step1, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp32, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz)); } static void sub64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* ) { vBinOp64, IF_SIMD(VSub)>(src1, step1, src2, step2, dst, step, sz); } template<> inline uchar OpMin::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); } template<> inline uchar OpMax::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); } static void max8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) uchar* s1 = (uchar*)src1; uchar* s2 = (uchar*)src2; uchar* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMaxEvery_8u(s1, s2, d, sz.width)) break; s1 += step1; s2 += step2; d += step; } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void max8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void max16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) ushort* s1 = (ushort*)src1; ushort* s2 = (ushort*)src2; ushort* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMaxEvery_16u(s1, s2, d, sz.width)) break; s1 = (ushort*)((uchar*)s1 + step1); s2 = (ushort*)((uchar*)s2 + step2); d = (ushort*)((uchar*)d + step); } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void max16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void max32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* ) { vBinOp32, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void max32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) float* s1 = (float*)src1; float* s2 = (float*)src2; float* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMaxEvery_32f(s1, s2, d, sz.width)) break; s1 = (float*)((uchar*)s1 + step1); s2 = (float*)((uchar*)s2 + step2); d = (float*)((uchar*)d + step); } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp32, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void max64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* ) { #if ARITHM_USE_IPP == 1 double* s1 = (double*)src1; double* s2 = (double*)src2; double* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMaxEvery_64f(s1, s2, d, sz.width)) break; s1 = (double*)((uchar*)s1 + step1); s2 = (double*)((uchar*)s2 + step2); d = (double*)((uchar*)d + step); } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp64, IF_SIMD(VMax)>(src1, step1, src2, step2, dst, step, sz); } static void min8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) uchar* s1 = (uchar*)src1; uchar* s2 = (uchar*)src2; uchar* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMinEvery_8u(s1, s2, d, sz.width)) break; s1 += step1; s2 += step2; d += step; } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void min8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void min16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) ushort* s1 = (ushort*)src1; ushort* s2 = (ushort*)src2; ushort* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMinEvery_16u(s1, s2, d, sz.width)) break; s1 = (ushort*)((uchar*)s1 + step1); s2 = (ushort*)((uchar*)s2 + step2); d = (ushort*)((uchar*)d + step); } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void min16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void min32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* ) { vBinOp32, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void min32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) float* s1 = (float*)src1; float* s2 = (float*)src2; float* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMinEvery_32f(s1, s2, d, sz.width)) break; s1 = (float*)((uchar*)s1 + step1); s2 = (float*)((uchar*)s2 + step2); d = (float*)((uchar*)d + step); } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp32, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void min64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* ) { #if ARITHM_USE_IPP == 1 double* s1 = (double*)src1; double* s2 = (double*)src2; double* d = dst; fixSteps(sz, sizeof(dst[0]), step1, step2, step); int i = 0; for(; i < sz.height; i++) { if (0 > ippsMinEvery_64f(s1, s2, d, sz.width)) break; s1 = (double*)((uchar*)s1 + step1); s2 = (double*)((uchar*)s2 + step2); d = (double*)((uchar*)d + step); } if (i == sz.height) return; setIppErrorStatus(); #endif vBinOp64, IF_SIMD(VMin)>(src1, step1, src2, step2, dst, step, sz); } static void absdiff8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAbsDiff_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz)); } static void absdiff8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz); } static void absdiff16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAbsDiff_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz)); } static void absdiff16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* ) { vBinOp, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz); } static void absdiff32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* ) { vBinOp32, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz); } static void absdiff32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAbsDiff_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp32, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz)); } static void absdiff64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* ) { vBinOp64, IF_SIMD(VAbsDiff)>(src1, step1, src2, step2, dst, step, sz); } static void and8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiAnd_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VAnd)>(src1, step1, src2, step2, dst, step, sz)); } static void or8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiOr_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VOr)>(src1, step1, src2, step2, dst, step, sz)); } static void xor8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); if (0 <= ippiXor_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VXor)>(src1, step1, src2, step2, dst, step, sz)); } static void not8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* ) { #if (ARITHM_USE_IPP == 1) fixSteps(sz, sizeof(dst[0]), step1, step2, step); (void)src2; if (0 <= ippiNot_8u_C1R(src1, (int)step1, dst, (int)step, ippiSize(sz))) return; setIppErrorStatus(); #endif (vBinOp, IF_SIMD(VNot)>(src1, step1, src2, step2, dst, step, sz)); } /****************************************************************************************\ * logical operations * \****************************************************************************************/ void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize ) { int scn = (int)sc.total(), cn = CV_MAT_CN(buftype); size_t esz = CV_ELEM_SIZE(buftype); getConvertFunc(sc.depth(), buftype)(sc.data, 1, 0, 1, scbuf, 1, Size(std::min(cn, scn), 1), 0); // unroll the scalar if( scn < cn ) { CV_Assert( scn == 1 ); size_t esz1 = CV_ELEM_SIZE1(buftype); for( size_t i = esz1; i < esz; i++ ) scbuf[i] = scbuf[i - esz1]; } for( size_t i = esz; i < blocksize*esz; i++ ) scbuf[i] = scbuf[i - esz]; } enum { OCL_OP_ADD=0, OCL_OP_SUB=1, OCL_OP_RSUB=2, OCL_OP_ABSDIFF=3, OCL_OP_MUL=4, OCL_OP_MUL_SCALE=5, OCL_OP_DIV_SCALE=6, OCL_OP_RECIP_SCALE=7, OCL_OP_ADDW=8, OCL_OP_AND=9, OCL_OP_OR=10, OCL_OP_XOR=11, OCL_OP_NOT=12, OCL_OP_MIN=13, OCL_OP_MAX=14, OCL_OP_RDIV_SCALE=15 }; #ifdef HAVE_OPENCL static const char* oclop2str[] = { "OP_ADD", "OP_SUB", "OP_RSUB", "OP_ABSDIFF", "OP_MUL", "OP_MUL_SCALE", "OP_DIV_SCALE", "OP_RECIP_SCALE", "OP_ADDW", "OP_AND", "OP_OR", "OP_XOR", "OP_NOT", "OP_MIN", "OP_MAX", "OP_RDIV_SCALE", 0 }; static bool ocl_binary_op(InputArray _src1, InputArray _src2, OutputArray _dst, InputArray _mask, bool bitwise, int oclop, bool haveScalar ) { bool haveMask = !_mask.empty(); int srctype = _src1.type(); int srcdepth = CV_MAT_DEPTH(srctype); int cn = CV_MAT_CN(srctype); const ocl::Device d = ocl::Device::getDefault(); bool doubleSupport = d.doubleFPConfig() > 0; if( oclop < 0 || ((haveMask || haveScalar) && cn > 4) || (!doubleSupport && srcdepth == CV_64F && !bitwise)) return false; char opts[1024]; int kercn = haveMask || haveScalar ? cn : ocl::predictOptimalVectorWidth(_src1, _src2, _dst); int scalarcn = kercn == 3 ? 4 : kercn; int rowsPerWI = d.isIntel() ? 4 : 1; sprintf(opts, "-D %s%s -D %s -D dstT=%s%s -D dstT_C1=%s -D workST=%s -D cn=%d -D rowsPerWI=%d", haveMask ? "MASK_" : "", haveScalar ? "UNARY_OP" : "BINARY_OP", oclop2str[oclop], bitwise ? ocl::memopTypeToStr(CV_MAKETYPE(srcdepth, kercn)) : ocl::typeToStr(CV_MAKETYPE(srcdepth, kercn)), doubleSupport ? " -D DOUBLE_SUPPORT" : "", bitwise ? ocl::memopTypeToStr(CV_MAKETYPE(srcdepth, 1)) : ocl::typeToStr(CV_MAKETYPE(srcdepth, 1)), bitwise ? ocl::memopTypeToStr(CV_MAKETYPE(srcdepth, scalarcn)) : ocl::typeToStr(CV_MAKETYPE(srcdepth, scalarcn)), kercn, rowsPerWI); ocl::Kernel k("KF", ocl::core::arithm_oclsrc, opts); if (k.empty()) return false; UMat src1 = _src1.getUMat(), src2; UMat dst = _dst.getUMat(), mask = _mask.getUMat(); ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1, cn, kercn); ocl::KernelArg dstarg = haveMask ? ocl::KernelArg::ReadWrite(dst, cn, kercn) : ocl::KernelArg::WriteOnly(dst, cn, kercn); ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask, 1); if( haveScalar ) { size_t esz = CV_ELEM_SIZE1(srctype)*scalarcn; double buf[4] = {0,0,0,0}; if( oclop != OCL_OP_NOT ) { Mat src2sc = _src2.getMat(); convertAndUnrollScalar(src2sc, srctype, (uchar*)buf, 1); } ocl::KernelArg scalararg = ocl::KernelArg(0, 0, 0, 0, buf, esz); if( !haveMask ) k.args(src1arg, dstarg, scalararg); else k.args(src1arg, maskarg, dstarg, scalararg); } else { src2 = _src2.getUMat(); ocl::KernelArg src2arg = ocl::KernelArg::ReadOnlyNoSize(src2, cn, kercn); if( !haveMask ) k.args(src1arg, src2arg, dstarg); else k.args(src1arg, src2arg, maskarg, dstarg); } size_t globalsize[] = { src1.cols * cn / kercn, (src1.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, 0, false); } #endif static void binary_op( InputArray _src1, InputArray _src2, OutputArray _dst, InputArray _mask, const BinaryFunc* tab, bool bitwise, int oclop ) { const _InputArray *psrc1 = &_src1, *psrc2 = &_src2; int kind1 = psrc1->kind(), kind2 = psrc2->kind(); int type1 = psrc1->type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1); int type2 = psrc2->type(), depth2 = CV_MAT_DEPTH(type2), cn2 = CV_MAT_CN(type2); int dims1 = psrc1->dims(), dims2 = psrc2->dims(); Size sz1 = dims1 <= 2 ? psrc1->size() : Size(); Size sz2 = dims2 <= 2 ? psrc2->size() : Size(); #ifdef HAVE_OPENCL bool use_opencl = (kind1 == _InputArray::UMAT || kind2 == _InputArray::UMAT) && dims1 <= 2 && dims2 <= 2; #endif bool haveMask = !_mask.empty(), haveScalar = false; BinaryFunc func; if( dims1 <= 2 && dims2 <= 2 && kind1 == kind2 && sz1 == sz2 && type1 == type2 && !haveMask ) { _dst.create(sz1, type1); CV_OCL_RUN(use_opencl, ocl_binary_op(*psrc1, *psrc2, _dst, _mask, bitwise, oclop, false)) if( bitwise ) { func = *tab; cn = (int)CV_ELEM_SIZE(type1); } else func = tab[depth1]; Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat(); Size sz = getContinuousSize(src1, src2, dst); size_t len = sz.width*(size_t)cn; if( len == (size_t)(int)len ) { sz.width = (int)len; func(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, 0); return; } } if( oclop == OCL_OP_NOT ) haveScalar = true; else if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 || !psrc1->sameSize(*psrc2) || type1 != type2 ) { if( checkScalar(*psrc1, type2, kind1, kind2) ) { // src1 is a scalar; swap it with src2 swap(psrc1, psrc2); swap(type1, type2); swap(depth1, depth2); swap(cn, cn2); swap(sz1, sz2); } else if( !checkScalar(*psrc2, type1, kind2, kind1) ) CV_Error( CV_StsUnmatchedSizes, "The operation is neither 'array op array' (where arrays have the same size and type), " "nor 'array op scalar', nor 'scalar op array'" ); haveScalar = true; } else { CV_Assert( psrc1->sameSize(*psrc2) && type1 == type2 ); } size_t esz = CV_ELEM_SIZE(type1); size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz; BinaryFunc copymask = 0; bool reallocate = false; if( haveMask ) { int mtype = _mask.type(); CV_Assert( (mtype == CV_8U || mtype == CV_8S) && _mask.sameSize(*psrc1)); copymask = getCopyMaskFunc(esz); reallocate = !_dst.sameSize(*psrc1) || _dst.type() != type1; } AutoBuffer _buf; uchar *scbuf = 0, *maskbuf = 0; _dst.createSameSize(*psrc1, type1); // if this is mask operation and dst has been reallocated, // we have to clear the destination if( haveMask && reallocate ) _dst.setTo(0.); CV_OCL_RUN(use_opencl, ocl_binary_op(*psrc1, *psrc2, _dst, _mask, bitwise, oclop, haveScalar)) Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(); Mat dst = _dst.getMat(), mask = _mask.getMat(); if( bitwise ) { func = *tab; cn = (int)esz; } else func = tab[depth1]; if( !haveScalar ) { const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 }; uchar* ptrs[4]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = total; if( blocksize*cn > INT_MAX ) blocksize = INT_MAX/cn; if( haveMask ) { blocksize = std::min(blocksize, blocksize0); _buf.allocate(blocksize*esz); maskbuf = _buf; } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); func( ptrs[0], 0, ptrs[1], 0, haveMask ? maskbuf : ptrs[2], 0, Size(bsz*cn, 1), 0 ); if( haveMask ) { copymask( maskbuf, 0, ptrs[3], 0, ptrs[2], 0, Size(bsz, 1), &esz ); ptrs[3] += bsz; } bsz *= (int)esz; ptrs[0] += bsz; ptrs[1] += bsz; ptrs[2] += bsz; } } } else { const Mat* arrays[] = { &src1, &dst, &mask, 0 }; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = std::min(total, blocksize0); _buf.allocate(blocksize*(haveMask ? 2 : 1)*esz + 32); scbuf = _buf; maskbuf = alignPtr(scbuf + blocksize*esz, 16); convertAndUnrollScalar( src2, src1.type(), scbuf, blocksize); for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); func( ptrs[0], 0, scbuf, 0, haveMask ? maskbuf : ptrs[1], 0, Size(bsz*cn, 1), 0 ); if( haveMask ) { copymask( maskbuf, 0, ptrs[2], 0, ptrs[1], 0, Size(bsz, 1), &esz ); ptrs[2] += bsz; } bsz *= (int)esz; ptrs[0] += bsz; ptrs[1] += bsz; } } } } static BinaryFunc* getMaxTab() { static BinaryFunc maxTab[] = { (BinaryFunc)GET_OPTIMIZED(max8u), (BinaryFunc)GET_OPTIMIZED(max8s), (BinaryFunc)GET_OPTIMIZED(max16u), (BinaryFunc)GET_OPTIMIZED(max16s), (BinaryFunc)GET_OPTIMIZED(max32s), (BinaryFunc)GET_OPTIMIZED(max32f), (BinaryFunc)max64f, 0 }; return maxTab; } static BinaryFunc* getMinTab() { static BinaryFunc minTab[] = { (BinaryFunc)GET_OPTIMIZED(min8u), (BinaryFunc)GET_OPTIMIZED(min8s), (BinaryFunc)GET_OPTIMIZED(min16u), (BinaryFunc)GET_OPTIMIZED(min16s), (BinaryFunc)GET_OPTIMIZED(min32s), (BinaryFunc)GET_OPTIMIZED(min32f), (BinaryFunc)min64f, 0 }; return minTab; } } void cv::bitwise_and(InputArray a, InputArray b, OutputArray c, InputArray mask) { BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(and8u); binary_op(a, b, c, mask, &f, true, OCL_OP_AND); } void cv::bitwise_or(InputArray a, InputArray b, OutputArray c, InputArray mask) { BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(or8u); binary_op(a, b, c, mask, &f, true, OCL_OP_OR); } void cv::bitwise_xor(InputArray a, InputArray b, OutputArray c, InputArray mask) { BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(xor8u); binary_op(a, b, c, mask, &f, true, OCL_OP_XOR); } void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask) { BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(not8u); binary_op(a, a, c, mask, &f, true, OCL_OP_NOT); } void cv::max( InputArray src1, InputArray src2, OutputArray dst ) { binary_op(src1, src2, dst, noArray(), getMaxTab(), false, OCL_OP_MAX ); } void cv::min( InputArray src1, InputArray src2, OutputArray dst ) { binary_op(src1, src2, dst, noArray(), getMinTab(), false, OCL_OP_MIN ); } void cv::max(const Mat& src1, const Mat& src2, Mat& dst) { OutputArray _dst(dst); binary_op(src1, src2, _dst, noArray(), getMaxTab(), false, OCL_OP_MAX ); } void cv::min(const Mat& src1, const Mat& src2, Mat& dst) { OutputArray _dst(dst); binary_op(src1, src2, _dst, noArray(), getMinTab(), false, OCL_OP_MIN ); } void cv::max(const UMat& src1, const UMat& src2, UMat& dst) { OutputArray _dst(dst); binary_op(src1, src2, _dst, noArray(), getMaxTab(), false, OCL_OP_MAX ); } void cv::min(const UMat& src1, const UMat& src2, UMat& dst) { OutputArray _dst(dst); binary_op(src1, src2, _dst, noArray(), getMinTab(), false, OCL_OP_MIN ); } /****************************************************************************************\ * add/subtract * \****************************************************************************************/ namespace cv { static int actualScalarDepth(const double* data, int len) { int i = 0, minval = INT_MAX, maxval = INT_MIN; for(; i < len; ++i) { int ival = cvRound(data[i]); if( ival != data[i] ) break; minval = MIN(minval, ival); maxval = MAX(maxval, ival); } return i < len ? CV_64F : minval >= 0 && maxval <= (int)UCHAR_MAX ? CV_8U : minval >= (int)SCHAR_MIN && maxval <= (int)SCHAR_MAX ? CV_8S : minval >= 0 && maxval <= (int)USHRT_MAX ? CV_16U : minval >= (int)SHRT_MIN && maxval <= (int)SHRT_MAX ? CV_16S : CV_32S; } #ifdef HAVE_OPENCL static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst, InputArray _mask, int wtype, void* usrdata, int oclop, bool haveScalar ) { const ocl::Device d = ocl::Device::getDefault(); bool doubleSupport = d.doubleFPConfig() > 0; int type1 = _src1.type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1); bool haveMask = !_mask.empty(); if ( (haveMask || haveScalar) && cn > 4 ) return false; int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32S, CV_MAT_DEPTH(wtype)); if (!doubleSupport) wdepth = std::min(wdepth, CV_32F); wtype = CV_MAKETYPE(wdepth, cn); int type2 = haveScalar ? wtype : _src2.type(), depth2 = CV_MAT_DEPTH(type2); if (!doubleSupport && (depth2 == CV_64F || depth1 == CV_64F)) return false; int kercn = haveMask || haveScalar ? cn : ocl::predictOptimalVectorWidth(_src1, _src2, _dst); int scalarcn = kercn == 3 ? 4 : kercn, rowsPerWI = d.isIntel() ? 4 : 1; char cvtstr[4][32], opts[1024]; sprintf(opts, "-D %s%s -D %s -D srcT1=%s -D srcT1_C1=%s -D srcT2=%s -D srcT2_C1=%s " "-D dstT=%s -D dstT_C1=%s -D workT=%s -D workST=%s -D scaleT=%s -D wdepth=%d -D convertToWT1=%s " "-D convertToWT2=%s -D convertToDT=%s%s -D cn=%d -D rowsPerWI=%d", (haveMask ? "MASK_" : ""), (haveScalar ? "UNARY_OP" : "BINARY_OP"), oclop2str[oclop], ocl::typeToStr(CV_MAKETYPE(depth1, kercn)), ocl::typeToStr(depth1), ocl::typeToStr(CV_MAKETYPE(depth2, kercn)), ocl::typeToStr(depth2), ocl::typeToStr(CV_MAKETYPE(ddepth, kercn)), ocl::typeToStr(ddepth), ocl::typeToStr(CV_MAKETYPE(wdepth, kercn)), ocl::typeToStr(CV_MAKETYPE(wdepth, scalarcn)), ocl::typeToStr(wdepth), wdepth, ocl::convertTypeStr(depth1, wdepth, kercn, cvtstr[0]), ocl::convertTypeStr(depth2, wdepth, kercn, cvtstr[1]), ocl::convertTypeStr(wdepth, ddepth, kercn, cvtstr[2]), doubleSupport ? " -D DOUBLE_SUPPORT" : "", kercn, rowsPerWI); size_t usrdata_esz = CV_ELEM_SIZE(wdepth); const uchar* usrdata_p = (const uchar*)usrdata; const double* usrdata_d = (const double*)usrdata; float usrdata_f[3]; int i, n = oclop == OCL_OP_MUL_SCALE || oclop == OCL_OP_DIV_SCALE || oclop == OCL_OP_RDIV_SCALE || oclop == OCL_OP_RECIP_SCALE ? 1 : oclop == OCL_OP_ADDW ? 3 : 0; if( n > 0 && wdepth == CV_32F ) { for( i = 0; i < n; i++ ) usrdata_f[i] = (float)usrdata_d[i]; usrdata_p = (const uchar*)usrdata_f; } ocl::Kernel k("KF", ocl::core::arithm_oclsrc, opts); if (k.empty()) return false; UMat src1 = _src1.getUMat(), src2; UMat dst = _dst.getUMat(), mask = _mask.getUMat(); ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1, cn, kercn); ocl::KernelArg dstarg = haveMask ? ocl::KernelArg::ReadWrite(dst, cn, kercn) : ocl::KernelArg::WriteOnly(dst, cn, kercn); ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask, 1); if( haveScalar ) { size_t esz = CV_ELEM_SIZE1(wtype)*scalarcn; double buf[4]={0,0,0,0}; Mat src2sc = _src2.getMat(); if( !src2sc.empty() ) convertAndUnrollScalar(src2sc, wtype, (uchar*)buf, 1); ocl::KernelArg scalararg = ocl::KernelArg(0, 0, 0, 0, buf, esz); if( !haveMask ) { if(n == 0) k.args(src1arg, dstarg, scalararg); else if(n == 1) k.args(src1arg, dstarg, scalararg, ocl::KernelArg(0, 0, 0, 0, usrdata_p, usrdata_esz)); else CV_Error(Error::StsNotImplemented, "unsupported number of extra parameters"); } else k.args(src1arg, maskarg, dstarg, scalararg); } else { src2 = _src2.getUMat(); ocl::KernelArg src2arg = ocl::KernelArg::ReadOnlyNoSize(src2, cn, kercn); if( !haveMask ) { if (n == 0) k.args(src1arg, src2arg, dstarg); else if (n == 1) k.args(src1arg, src2arg, dstarg, ocl::KernelArg(0, 0, 0, 0, usrdata_p, usrdata_esz)); else if (n == 3) k.args(src1arg, src2arg, dstarg, ocl::KernelArg(0, 0, 0, 0, usrdata_p, usrdata_esz), ocl::KernelArg(0, 0, 0, 0, usrdata_p + usrdata_esz, usrdata_esz), ocl::KernelArg(0, 0, 0, 0, usrdata_p + usrdata_esz*2, usrdata_esz)); else CV_Error(Error::StsNotImplemented, "unsupported number of extra parameters"); } else k.args(src1arg, src2arg, maskarg, dstarg); } size_t globalsize[] = { src1.cols * cn / kercn, (src1.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } #endif static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst, InputArray _mask, int dtype, BinaryFunc* tab, bool muldiv=false, void* usrdata=0, int oclop=-1 ) { const _InputArray *psrc1 = &_src1, *psrc2 = &_src2; int kind1 = psrc1->kind(), kind2 = psrc2->kind(); bool haveMask = !_mask.empty(); bool reallocate = false; int type1 = psrc1->type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1); int type2 = psrc2->type(), depth2 = CV_MAT_DEPTH(type2), cn2 = CV_MAT_CN(type2); int wtype, dims1 = psrc1->dims(), dims2 = psrc2->dims(); Size sz1 = dims1 <= 2 ? psrc1->size() : Size(); Size sz2 = dims2 <= 2 ? psrc2->size() : Size(); #ifdef HAVE_OPENCL bool use_opencl = _dst.isUMat() && dims1 <= 2 && dims2 <= 2; #endif bool src1Scalar = checkScalar(*psrc1, type2, kind1, kind2); bool src2Scalar = checkScalar(*psrc2, type1, kind2, kind1); if( (kind1 == kind2 || cn == 1) && sz1 == sz2 && dims1 <= 2 && dims2 <= 2 && type1 == type2 && !haveMask && ((!_dst.fixedType() && (dtype < 0 || CV_MAT_DEPTH(dtype) == depth1)) || (_dst.fixedType() && _dst.type() == type1)) && ((src1Scalar && src2Scalar) || (!src1Scalar && !src2Scalar)) ) { _dst.createSameSize(*psrc1, type1); CV_OCL_RUN(use_opencl, ocl_arithm_op(*psrc1, *psrc2, _dst, _mask, (!usrdata ? type1 : std::max(depth1, CV_32F)), usrdata, oclop, false)) Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat(); Size sz = getContinuousSize(src1, src2, dst, src1.channels()); tab[depth1](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, usrdata); return; } bool haveScalar = false, swapped12 = false; if( dims1 != dims2 || sz1 != sz2 || cn != cn2 || (kind1 == _InputArray::MATX && (sz1 == Size(1,4) || sz1 == Size(1,1))) || (kind2 == _InputArray::MATX && (sz2 == Size(1,4) || sz2 == Size(1,1))) ) { if( checkScalar(*psrc1, type2, kind1, kind2) ) { // src1 is a scalar; swap it with src2 swap(psrc1, psrc2); swap(sz1, sz2); swap(type1, type2); swap(depth1, depth2); swap(cn, cn2); swap(dims1, dims2); swapped12 = true; if( oclop == OCL_OP_SUB ) oclop = OCL_OP_RSUB; if ( oclop == OCL_OP_DIV_SCALE ) oclop = OCL_OP_RDIV_SCALE; } else if( !checkScalar(*psrc2, type1, kind2, kind1) ) CV_Error( CV_StsUnmatchedSizes, "The operation is neither 'array op array' " "(where arrays have the same size and the same number of channels), " "nor 'array op scalar', nor 'scalar op array'" ); haveScalar = true; CV_Assert(type2 == CV_64F && (sz2.height == 1 || sz2.height == 4)); if (!muldiv) { Mat sc = psrc2->getMat(); depth2 = actualScalarDepth(sc.ptr(), cn); if( depth2 == CV_64F && (depth1 < CV_32S || depth1 == CV_32F) ) depth2 = CV_32F; } else depth2 = CV_64F; } if( dtype < 0 ) { if( _dst.fixedType() ) dtype = _dst.type(); else { if( !haveScalar && type1 != type2 ) CV_Error(CV_StsBadArg, "When the input arrays in add/subtract/multiply/divide functions have different types, " "the output array type must be explicitly specified"); dtype = type1; } } dtype = CV_MAT_DEPTH(dtype); if( depth1 == depth2 && dtype == depth1 ) wtype = dtype; else if( !muldiv ) { wtype = depth1 <= CV_8S && depth2 <= CV_8S ? CV_16S : depth1 <= CV_32S && depth2 <= CV_32S ? CV_32S : std::max(depth1, depth2); wtype = std::max(wtype, dtype); // when the result of addition should be converted to an integer type, // and just one of the input arrays is floating-point, it makes sense to convert that input to integer type before the operation, // instead of converting the other input to floating-point and then converting the operation result back to integers. if( dtype < CV_32F && (depth1 < CV_32F || depth2 < CV_32F) ) wtype = CV_32S; } else { wtype = std::max(depth1, std::max(depth2, CV_32F)); wtype = std::max(wtype, dtype); } dtype = CV_MAKETYPE(dtype, cn); wtype = CV_MAKETYPE(wtype, cn); if( haveMask ) { int mtype = _mask.type(); CV_Assert( (mtype == CV_8UC1 || mtype == CV_8SC1) && _mask.sameSize(*psrc1) ); reallocate = !_dst.sameSize(*psrc1) || _dst.type() != dtype; } _dst.createSameSize(*psrc1, dtype); if( reallocate ) _dst.setTo(0.); CV_OCL_RUN(use_opencl, ocl_arithm_op(*psrc1, *psrc2, _dst, _mask, wtype, usrdata, oclop, haveScalar)) BinaryFunc cvtsrc1 = type1 == wtype ? 0 : getConvertFunc(type1, wtype); BinaryFunc cvtsrc2 = type2 == type1 ? cvtsrc1 : type2 == wtype ? 0 : getConvertFunc(type2, wtype); BinaryFunc cvtdst = dtype == wtype ? 0 : getConvertFunc(wtype, dtype); size_t esz1 = CV_ELEM_SIZE(type1), esz2 = CV_ELEM_SIZE(type2); size_t dsz = CV_ELEM_SIZE(dtype), wsz = CV_ELEM_SIZE(wtype); size_t blocksize0 = (size_t)(BLOCK_SIZE + wsz-1)/wsz; BinaryFunc copymask = getCopyMaskFunc(dsz); Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat(), mask = _mask.getMat(); AutoBuffer _buf; uchar *buf, *maskbuf = 0, *buf1 = 0, *buf2 = 0, *wbuf = 0; size_t bufesz = (cvtsrc1 ? wsz : 0) + (cvtsrc2 || haveScalar ? wsz : 0) + (cvtdst ? wsz : 0) + (haveMask ? dsz : 0); BinaryFunc func = tab[CV_MAT_DEPTH(wtype)]; if( !haveScalar ) { const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 }; uchar* ptrs[4]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = total; if( haveMask || cvtsrc1 || cvtsrc2 || cvtdst ) blocksize = std::min(blocksize, blocksize0); _buf.allocate(bufesz*blocksize + 64); buf = _buf; if( cvtsrc1 ) buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16); if( cvtsrc2 ) buf2 = buf, buf = alignPtr(buf + blocksize*wsz, 16); wbuf = maskbuf = buf; if( cvtdst ) buf = alignPtr(buf + blocksize*wsz, 16); if( haveMask ) maskbuf = buf; for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); Size bszn(bsz*cn, 1); const uchar *sptr1 = ptrs[0], *sptr2 = ptrs[1]; uchar* dptr = ptrs[2]; if( cvtsrc1 ) { cvtsrc1( sptr1, 1, 0, 1, buf1, 1, bszn, 0 ); sptr1 = buf1; } if( ptrs[0] == ptrs[1] ) sptr2 = sptr1; else if( cvtsrc2 ) { cvtsrc2( sptr2, 1, 0, 1, buf2, 1, bszn, 0 ); sptr2 = buf2; } if( !haveMask && !cvtdst ) func( sptr1, 1, sptr2, 1, dptr, 1, bszn, usrdata ); else { func( sptr1, 1, sptr2, 1, wbuf, 0, bszn, usrdata ); if( !haveMask ) cvtdst( wbuf, 1, 0, 1, dptr, 1, bszn, 0 ); else if( !cvtdst ) { copymask( wbuf, 1, ptrs[3], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[3] += bsz; } else { cvtdst( wbuf, 1, 0, 1, maskbuf, 1, bszn, 0 ); copymask( maskbuf, 1, ptrs[3], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[3] += bsz; } } ptrs[0] += bsz*esz1; ptrs[1] += bsz*esz2; ptrs[2] += bsz*dsz; } } } else { const Mat* arrays[] = { &src1, &dst, &mask, 0 }; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = std::min(total, blocksize0); _buf.allocate(bufesz*blocksize + 64); buf = _buf; if( cvtsrc1 ) buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16); buf2 = buf; buf = alignPtr(buf + blocksize*wsz, 16); wbuf = maskbuf = buf; if( cvtdst ) buf = alignPtr(buf + blocksize*wsz, 16); if( haveMask ) maskbuf = buf; convertAndUnrollScalar( src2, wtype, buf2, blocksize); for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); Size bszn(bsz*cn, 1); const uchar *sptr1 = ptrs[0]; const uchar* sptr2 = buf2; uchar* dptr = ptrs[1]; if( cvtsrc1 ) { cvtsrc1( sptr1, 1, 0, 1, buf1, 1, bszn, 0 ); sptr1 = buf1; } if( swapped12 ) std::swap(sptr1, sptr2); if( !haveMask && !cvtdst ) func( sptr1, 1, sptr2, 1, dptr, 1, bszn, usrdata ); else { func( sptr1, 1, sptr2, 1, wbuf, 1, bszn, usrdata ); if( !haveMask ) cvtdst( wbuf, 1, 0, 1, dptr, 1, bszn, 0 ); else if( !cvtdst ) { copymask( wbuf, 1, ptrs[2], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[2] += bsz; } else { cvtdst( wbuf, 1, 0, 1, maskbuf, 1, bszn, 0 ); copymask( maskbuf, 1, ptrs[2], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[2] += bsz; } } ptrs[0] += bsz*esz1; ptrs[1] += bsz*dsz; } } } } static BinaryFunc* getAddTab() { static BinaryFunc addTab[] = { (BinaryFunc)GET_OPTIMIZED(add8u), (BinaryFunc)GET_OPTIMIZED(add8s), (BinaryFunc)GET_OPTIMIZED(add16u), (BinaryFunc)GET_OPTIMIZED(add16s), (BinaryFunc)GET_OPTIMIZED(add32s), (BinaryFunc)GET_OPTIMIZED(add32f), (BinaryFunc)add64f, 0 }; return addTab; } static BinaryFunc* getSubTab() { static BinaryFunc subTab[] = { (BinaryFunc)GET_OPTIMIZED(sub8u), (BinaryFunc)GET_OPTIMIZED(sub8s), (BinaryFunc)GET_OPTIMIZED(sub16u), (BinaryFunc)GET_OPTIMIZED(sub16s), (BinaryFunc)GET_OPTIMIZED(sub32s), (BinaryFunc)GET_OPTIMIZED(sub32f), (BinaryFunc)sub64f, 0 }; return subTab; } static BinaryFunc* getAbsDiffTab() { static BinaryFunc absDiffTab[] = { (BinaryFunc)GET_OPTIMIZED(absdiff8u), (BinaryFunc)GET_OPTIMIZED(absdiff8s), (BinaryFunc)GET_OPTIMIZED(absdiff16u), (BinaryFunc)GET_OPTIMIZED(absdiff16s), (BinaryFunc)GET_OPTIMIZED(absdiff32s), (BinaryFunc)GET_OPTIMIZED(absdiff32f), (BinaryFunc)absdiff64f, 0 }; return absDiffTab; } } void cv::add( InputArray src1, InputArray src2, OutputArray dst, InputArray mask, int dtype ) { arithm_op(src1, src2, dst, mask, dtype, getAddTab(), false, 0, OCL_OP_ADD ); } void cv::subtract( InputArray _src1, InputArray _src2, OutputArray _dst, InputArray mask, int dtype ) { #ifdef HAVE_TEGRA_OPTIMIZATION int kind1 = _src1.kind(), kind2 = _src2.kind(); Mat src1 = _src1.getMat(), src2 = _src2.getMat(); bool src1Scalar = checkScalar(src1, _src2.type(), kind1, kind2); bool src2Scalar = checkScalar(src2, _src1.type(), kind2, kind1); if (!src1Scalar && !src2Scalar && src1.depth() == CV_8U && src2.type() == src1.type() && src1.dims == 2 && src2.size() == src1.size() && mask.empty()) { if (dtype < 0) { if (_dst.fixedType()) { dtype = _dst.depth(); } else { dtype = src1.depth(); } } dtype = CV_MAT_DEPTH(dtype); if (!_dst.fixedType() || dtype == _dst.depth()) { _dst.create(src1.size(), CV_MAKE_TYPE(dtype, src1.channels())); if (dtype == CV_16S) { Mat dst = _dst.getMat(); if(tegra::subtract_8u8u16s(src1, src2, dst)) return; } else if (dtype == CV_32F) { Mat dst = _dst.getMat(); if(tegra::subtract_8u8u32f(src1, src2, dst)) return; } else if (dtype == CV_8S) { Mat dst = _dst.getMat(); if(tegra::subtract_8u8u8s(src1, src2, dst)) return; } } } #endif arithm_op(_src1, _src2, _dst, mask, dtype, getSubTab(), false, 0, OCL_OP_SUB ); } void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst ) { arithm_op(src1, src2, dst, noArray(), -1, getAbsDiffTab(), false, 0, OCL_OP_ABSDIFF); } /****************************************************************************************\ * multiply/divide * \****************************************************************************************/ namespace cv { template static void mul_( const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size size, WT scale ) { step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); step /= sizeof(dst[0]); if( scale == (WT)1. ) { for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int i=0; #if CV_ENABLE_UNROLLED for(; i <= size.width - 4; i += 4 ) { T t0; T t1; t0 = saturate_cast(src1[i ] * src2[i ]); t1 = saturate_cast(src1[i+1] * src2[i+1]); dst[i ] = t0; dst[i+1] = t1; t0 = saturate_cast(src1[i+2] * src2[i+2]); t1 = saturate_cast(src1[i+3] * src2[i+3]); dst[i+2] = t0; dst[i+3] = t1; } #endif for( ; i < size.width; i++ ) dst[i] = saturate_cast(src1[i] * src2[i]); } } else { for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int i = 0; #if CV_ENABLE_UNROLLED for(; i <= size.width - 4; i += 4 ) { T t0 = saturate_cast(scale*(WT)src1[i]*src2[i]); T t1 = saturate_cast(scale*(WT)src1[i+1]*src2[i+1]); dst[i] = t0; dst[i+1] = t1; t0 = saturate_cast(scale*(WT)src1[i+2]*src2[i+2]); t1 = saturate_cast(scale*(WT)src1[i+3]*src2[i+3]); dst[i+2] = t0; dst[i+3] = t1; } #endif for( ; i < size.width; i++ ) dst[i] = saturate_cast(scale*(WT)src1[i]*src2[i]); } } } template static void div_( const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size size, double scale ) { step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); step /= sizeof(dst[0]); for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int i = 0; #if CV_ENABLE_UNROLLED for( ; i <= size.width - 4; i += 4 ) { if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 ) { double a = (double)src2[i] * src2[i+1]; double b = (double)src2[i+2] * src2[i+3]; double d = scale/(a * b); b *= d; a *= d; T z0 = saturate_cast(src2[i+1] * ((double)src1[i] * b)); T z1 = saturate_cast(src2[i] * ((double)src1[i+1] * b)); T z2 = saturate_cast(src2[i+3] * ((double)src1[i+2] * a)); T z3 = saturate_cast(src2[i+2] * ((double)src1[i+3] * a)); dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } else { T z0 = src2[i] != 0 ? saturate_cast(src1[i]*scale/src2[i]) : 0; T z1 = src2[i+1] != 0 ? saturate_cast(src1[i+1]*scale/src2[i+1]) : 0; T z2 = src2[i+2] != 0 ? saturate_cast(src1[i+2]*scale/src2[i+2]) : 0; T z3 = src2[i+3] != 0 ? saturate_cast(src1[i+3]*scale/src2[i+3]) : 0; dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } } #endif for( ; i < size.width; i++ ) dst[i] = src2[i] != 0 ? saturate_cast(src1[i]*scale/src2[i]) : 0; } } template static void recip_( const T*, size_t, const T* src2, size_t step2, T* dst, size_t step, Size size, double scale ) { step2 /= sizeof(src2[0]); step /= sizeof(dst[0]); for( ; size.height--; src2 += step2, dst += step ) { int i = 0; #if CV_ENABLE_UNROLLED for( ; i <= size.width - 4; i += 4 ) { if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 ) { double a = (double)src2[i] * src2[i+1]; double b = (double)src2[i+2] * src2[i+3]; double d = scale/(a * b); b *= d; a *= d; T z0 = saturate_cast(src2[i+1] * b); T z1 = saturate_cast(src2[i] * b); T z2 = saturate_cast(src2[i+3] * a); T z3 = saturate_cast(src2[i+2] * a); dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } else { T z0 = src2[i] != 0 ? saturate_cast(scale/src2[i]) : 0; T z1 = src2[i+1] != 0 ? saturate_cast(scale/src2[i+1]) : 0; T z2 = src2[i+2] != 0 ? saturate_cast(scale/src2[i+2]) : 0; T z3 = src2[i+3] != 0 ? saturate_cast(scale/src2[i+3]) : 0; dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } } #endif for( ; i < size.width; i++ ) dst[i] = src2[i] != 0 ? saturate_cast(scale/src2[i]) : 0; } } static void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* scale) { float fscale = (float)*(const double*)scale; #if defined HAVE_IPP if (std::fabs(fscale - 1) <= FLT_EPSILON) { if (ippiMul_8u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz), 0) >= 0) return; setIppErrorStatus(); } #endif mul_(src1, step1, src2, step2, dst, step, sz, fscale); } static void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* scale) { mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale); } static void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* scale) { float fscale = (float)*(const double*)scale; #if defined HAVE_IPP if (std::fabs(fscale - 1) <= FLT_EPSILON) { if (ippiMul_16u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz), 0) >= 0) return; setIppErrorStatus(); } #endif mul_(src1, step1, src2, step2, dst, step, sz, fscale); } static void mul16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* scale) { float fscale = (float)*(const double*)scale; #if defined HAVE_IPP if (std::fabs(fscale - 1) <= FLT_EPSILON) { if (ippiMul_16s_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz), 0) >= 0) return; setIppErrorStatus(); } #endif mul_(src1, step1, src2, step2, dst, step, sz, fscale); } static void mul32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* scale) { mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void mul32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* scale) { float fscale = (float)*(const double*)scale; #if defined HAVE_IPP if (std::fabs(fscale - 1) <= FLT_EPSILON) { if (ippiMul_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(sz)) >= 0) return; setIppErrorStatus(); } #endif mul_(src1, step1, src2, step2, dst, step, sz, fscale); } static void mul64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* scale) { mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* scale) { if( src1 ) div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); else recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* scale) { div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* scale) { div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* scale) { div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* scale) { div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* scale) { div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void div64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* scale) { div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static void recip64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* scale) { recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale); } static BinaryFunc* getMulTab() { static BinaryFunc mulTab[] = { (BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u, (BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f, (BinaryFunc)mul64f, 0 }; return mulTab; } static BinaryFunc* getDivTab() { static BinaryFunc divTab[] = { (BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u, (BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f, (BinaryFunc)div64f, 0 }; return divTab; } static BinaryFunc* getRecipTab() { static BinaryFunc recipTab[] = { (BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u, (BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f, (BinaryFunc)recip64f, 0 }; return recipTab; } } void cv::multiply(InputArray src1, InputArray src2, OutputArray dst, double scale, int dtype) { arithm_op(src1, src2, dst, noArray(), dtype, getMulTab(), true, &scale, std::abs(scale - 1.0) < DBL_EPSILON ? OCL_OP_MUL : OCL_OP_MUL_SCALE); } void cv::divide(InputArray src1, InputArray src2, OutputArray dst, double scale, int dtype) { arithm_op(src1, src2, dst, noArray(), dtype, getDivTab(), true, &scale, OCL_OP_DIV_SCALE); } void cv::divide(double scale, InputArray src2, OutputArray dst, int dtype) { arithm_op(src2, src2, dst, noArray(), dtype, getRecipTab(), true, &scale, OCL_OP_RECIP_SCALE); } /****************************************************************************************\ * addWeighted * \****************************************************************************************/ namespace cv { template static void addWeighted_( const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size size, void* _scalars ) { const double* scalars = (const double*)_scalars; WT alpha = (WT)scalars[0], beta = (WT)scalars[1], gamma = (WT)scalars[2]; step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); step /= sizeof(dst[0]); for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x = 0; #if CV_ENABLE_UNROLLED for( ; x <= size.width - 4; x += 4 ) { T t0 = saturate_cast(src1[x]*alpha + src2[x]*beta + gamma); T t1 = saturate_cast(src1[x+1]*alpha + src2[x+1]*beta + gamma); dst[x] = t0; dst[x+1] = t1; t0 = saturate_cast(src1[x+2]*alpha + src2[x+2]*beta + gamma); t1 = saturate_cast(src1[x+3]*alpha + src2[x+3]*beta + gamma); dst[x+2] = t0; dst[x+3] = t1; } #endif for( ; x < size.width; x++ ) dst[x] = saturate_cast(src1[x]*alpha + src2[x]*beta + gamma); } } static void addWeighted8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size size, void* _scalars ) { const double* scalars = (const double*)_scalars; float alpha = (float)scalars[0], beta = (float)scalars[1], gamma = (float)scalars[2]; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x = 0; #if CV_SSE2 if( USE_SSE2 ) { __m128 a4 = _mm_set1_ps(alpha), b4 = _mm_set1_ps(beta), g4 = _mm_set1_ps(gamma); __m128i z = _mm_setzero_si128(); for( ; x <= size.width - 8; x += 8 ) { __m128i u = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src1 + x)), z); __m128i v = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src2 + x)), z); __m128 u0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(u, z)); __m128 u1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(u, z)); __m128 v0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v, z)); __m128 v1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v, z)); u0 = _mm_add_ps(_mm_mul_ps(u0, a4), _mm_mul_ps(v0, b4)); u1 = _mm_add_ps(_mm_mul_ps(u1, a4), _mm_mul_ps(v1, b4)); u0 = _mm_add_ps(u0, g4); u1 = _mm_add_ps(u1, g4); u = _mm_packs_epi32(_mm_cvtps_epi32(u0), _mm_cvtps_epi32(u1)); u = _mm_packus_epi16(u, u); _mm_storel_epi64((__m128i*)(dst + x), u); } } #endif #if CV_ENABLE_UNROLLED for( ; x <= size.width - 4; x += 4 ) { float t0, t1; t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma; t1 = CV_8TO32F(src1[x+1])*alpha + CV_8TO32F(src2[x+1])*beta + gamma; dst[x] = saturate_cast(t0); dst[x+1] = saturate_cast(t1); t0 = CV_8TO32F(src1[x+2])*alpha + CV_8TO32F(src2[x+2])*beta + gamma; t1 = CV_8TO32F(src1[x+3])*alpha + CV_8TO32F(src2[x+3])*beta + gamma; dst[x+2] = saturate_cast(t0); dst[x+3] = saturate_cast(t1); } #endif for( ; x < size.width; x++ ) { float t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma; dst[x] = saturate_cast(t0); } } } static void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, Size sz, void* scalars ) { addWeighted_(src1, step1, src2, step2, dst, step, sz, scalars); } static void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, Size sz, void* scalars ) { addWeighted_(src1, step1, src2, step2, dst, step, sz, scalars); } static void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, Size sz, void* scalars ) { addWeighted_(src1, step1, src2, step2, dst, step, sz, scalars); } static void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, Size sz, void* scalars ) { addWeighted_(src1, step1, src2, step2, dst, step, sz, scalars); } static void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, Size sz, void* scalars ) { addWeighted_(src1, step1, src2, step2, dst, step, sz, scalars); } static void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, Size sz, void* scalars ) { addWeighted_(src1, step1, src2, step2, dst, step, sz, scalars); } static BinaryFunc* getAddWeightedTab() { static BinaryFunc addWeightedTab[] = { (BinaryFunc)GET_OPTIMIZED(addWeighted8u), (BinaryFunc)GET_OPTIMIZED(addWeighted8s), (BinaryFunc)GET_OPTIMIZED(addWeighted16u), (BinaryFunc)GET_OPTIMIZED(addWeighted16s), (BinaryFunc)GET_OPTIMIZED(addWeighted32s), (BinaryFunc)addWeighted32f, (BinaryFunc)addWeighted64f, 0 }; return addWeightedTab; } } void cv::addWeighted( InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype ) { double scalars[] = {alpha, beta, gamma}; arithm_op(src1, src2, dst, noArray(), dtype, getAddWeightedTab(), true, scalars, OCL_OP_ADDW); } /****************************************************************************************\ * compare * \****************************************************************************************/ namespace cv { template static void cmp_(const T* src1, size_t step1, const T* src2, size_t step2, uchar* dst, size_t step, Size size, int code) { step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); if( code == CMP_GE || code == CMP_LT ) { std::swap(src1, src2); std::swap(step1, step2); code = code == CMP_GE ? CMP_LE : CMP_GT; } if( code == CMP_GT || code == CMP_LE ) { int m = code == CMP_GT ? 0 : 255; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x = 0; #if CV_ENABLE_UNROLLED for( ; x <= size.width - 4; x += 4 ) { int t0, t1; t0 = -(src1[x] > src2[x]) ^ m; t1 = -(src1[x+1] > src2[x+1]) ^ m; dst[x] = (uchar)t0; dst[x+1] = (uchar)t1; t0 = -(src1[x+2] > src2[x+2]) ^ m; t1 = -(src1[x+3] > src2[x+3]) ^ m; dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1; } #endif for( ; x < size.width; x++ ) dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m); } } else if( code == CMP_EQ || code == CMP_NE ) { int m = code == CMP_EQ ? 0 : 255; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x = 0; #if CV_ENABLE_UNROLLED for( ; x <= size.width - 4; x += 4 ) { int t0, t1; t0 = -(src1[x] == src2[x]) ^ m; t1 = -(src1[x+1] == src2[x+1]) ^ m; dst[x] = (uchar)t0; dst[x+1] = (uchar)t1; t0 = -(src1[x+2] == src2[x+2]) ^ m; t1 = -(src1[x+3] == src2[x+3]) ^ m; dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1; } #endif for( ; x < size.width; x++ ) dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m); } } } #if ARITHM_USE_IPP inline static IppCmpOp convert_cmp(int _cmpop) { return _cmpop == CMP_EQ ? ippCmpEq : _cmpop == CMP_GT ? ippCmpGreater : _cmpop == CMP_GE ? ippCmpGreaterEq : _cmpop == CMP_LT ? ippCmpLess : _cmpop == CMP_LE ? ippCmpLessEq : (IppCmpOp)-1; } #endif static void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { #if ARITHM_USE_IPP IppCmpOp op = convert_cmp(*(int *)_cmpop); if( op >= 0 ) { fixSteps(size, sizeof(dst[0]), step1, step2, step); if (0 <= ippiCompare_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(size), op)) return; setIppErrorStatus(); } #endif //vz optimized cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); int code = *(int*)_cmpop; step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); if( code == CMP_GE || code == CMP_LT ) { std::swap(src1, src2); std::swap(step1, step2); code = code == CMP_GE ? CMP_LE : CMP_GT; } if( code == CMP_GT || code == CMP_LE ) { int m = code == CMP_GT ? 0 : 255; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x =0; #if CV_SSE2 if( USE_SSE2 ){ __m128i m128 = code == CMP_GT ? _mm_setzero_si128() : _mm_set1_epi8 (-1); __m128i c128 = _mm_set1_epi8 (-128); for( ; x <= size.width - 16; x += 16 ) { __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x)); // no simd for 8u comparison, that's why we need the trick r00 = _mm_sub_epi8(r00,c128); r10 = _mm_sub_epi8(r10,c128); r00 =_mm_xor_si128(_mm_cmpgt_epi8(r00, r10), m128); _mm_storeu_si128((__m128i*)(dst + x),r00); } } #endif for( ; x < size.width; x++ ){ dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m); } } } else if( code == CMP_EQ || code == CMP_NE ) { int m = code == CMP_EQ ? 0 : 255; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x = 0; #if CV_SSE2 if( USE_SSE2 ){ __m128i m128 = code == CMP_EQ ? _mm_setzero_si128() : _mm_set1_epi8 (-1); for( ; x <= size.width - 16; x += 16 ) { __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x)); r00 = _mm_xor_si128 ( _mm_cmpeq_epi8 (r00, r10), m128); _mm_storeu_si128((__m128i*)(dst + x), r00); } } #endif for( ; x < size.width; x++ ) dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m); } } } static void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); } static void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { #if ARITHM_USE_IPP IppCmpOp op = convert_cmp(*(int *)_cmpop); if( op >= 0 ) { fixSteps(size, sizeof(dst[0]), step1, step2, step); if (0 <= ippiCompare_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(size), op)) return; setIppErrorStatus(); } #endif cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); } static void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { #if ARITHM_USE_IPP IppCmpOp op = convert_cmp(*(int *)_cmpop); if( op > 0 ) { fixSteps(size, sizeof(dst[0]), step1, step2, step); if (0 <= ippiCompare_16s_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(size), op)) return; setIppErrorStatus(); } #endif //vz optimized cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); int code = *(int*)_cmpop; step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); if( code == CMP_GE || code == CMP_LT ) { std::swap(src1, src2); std::swap(step1, step2); code = code == CMP_GE ? CMP_LE : CMP_GT; } if( code == CMP_GT || code == CMP_LE ) { int m = code == CMP_GT ? 0 : 255; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x =0; #if CV_SSE2 if( USE_SSE2){// __m128i m128 = code == CMP_GT ? _mm_setzero_si128() : _mm_set1_epi16 (-1); for( ; x <= size.width - 16; x += 16 ) { __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x)); r00 = _mm_xor_si128 ( _mm_cmpgt_epi16 (r00, r10), m128); __m128i r01 = _mm_loadu_si128((const __m128i*)(src1 + x + 8)); __m128i r11 = _mm_loadu_si128((const __m128i*)(src2 + x + 8)); r01 = _mm_xor_si128 ( _mm_cmpgt_epi16 (r01, r11), m128); r11 = _mm_packs_epi16(r00, r01); _mm_storeu_si128((__m128i*)(dst + x), r11); } if( x <= size.width-8) { __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x)); r00 = _mm_xor_si128 ( _mm_cmpgt_epi16 (r00, r10), m128); r10 = _mm_packs_epi16(r00, r00); _mm_storel_epi64((__m128i*)(dst + x), r10); x += 8; } } #endif for( ; x < size.width; x++ ){ dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m); } } } else if( code == CMP_EQ || code == CMP_NE ) { int m = code == CMP_EQ ? 0 : 255; for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int x = 0; #if CV_SSE2 if( USE_SSE2 ){ __m128i m128 = code == CMP_EQ ? _mm_setzero_si128() : _mm_set1_epi16 (-1); for( ; x <= size.width - 16; x += 16 ) { __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x)); r00 = _mm_xor_si128 ( _mm_cmpeq_epi16 (r00, r10), m128); __m128i r01 = _mm_loadu_si128((const __m128i*)(src1 + x + 8)); __m128i r11 = _mm_loadu_si128((const __m128i*)(src2 + x + 8)); r01 = _mm_xor_si128 ( _mm_cmpeq_epi16 (r01, r11), m128); r11 = _mm_packs_epi16(r00, r01); _mm_storeu_si128((__m128i*)(dst + x), r11); } if( x <= size.width - 8) { __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x)); r00 = _mm_xor_si128 ( _mm_cmpeq_epi16 (r00, r10), m128); r10 = _mm_packs_epi16(r00, r00); _mm_storel_epi64((__m128i*)(dst + x), r10); x += 8; } } #endif for( ; x < size.width; x++ ) dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m); } } } static void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); } static void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { #if ARITHM_USE_IPP IppCmpOp op = convert_cmp(*(int *)_cmpop); if( op >= 0 ) { fixSteps(size, sizeof(dst[0]), step1, step2, step); if (0 <= ippiCompare_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, ippiSize(size), op)) return; setIppErrorStatus(); } #endif cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); } static void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2, uchar* dst, size_t step, Size size, void* _cmpop) { cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop); } static BinaryFunc getCmpFunc(int depth) { static BinaryFunc cmpTab[] = { (BinaryFunc)GET_OPTIMIZED(cmp8u), (BinaryFunc)GET_OPTIMIZED(cmp8s), (BinaryFunc)GET_OPTIMIZED(cmp16u), (BinaryFunc)GET_OPTIMIZED(cmp16s), (BinaryFunc)GET_OPTIMIZED(cmp32s), (BinaryFunc)GET_OPTIMIZED(cmp32f), (BinaryFunc)cmp64f, 0 }; return cmpTab[depth]; } static double getMinVal(int depth) { static const double tab[] = {0, -128, 0, -32768, INT_MIN, -FLT_MAX, -DBL_MAX, 0}; return tab[depth]; } static double getMaxVal(int depth) { static const double tab[] = {255, 127, 65535, 32767, INT_MAX, FLT_MAX, DBL_MAX, 0}; return tab[depth]; } #ifdef HAVE_OPENCL static bool ocl_compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op, bool haveScalar) { const ocl::Device& dev = ocl::Device::getDefault(); bool doubleSupport = dev.doubleFPConfig() > 0; int type1 = _src1.type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1), type2 = _src2.type(), depth2 = CV_MAT_DEPTH(type2); if (!doubleSupport && depth1 == CV_64F) return false; if (!haveScalar && (!_src1.sameSize(_src2) || type1 != type2)) return false; int kercn = haveScalar ? cn : ocl::predictOptimalVectorWidth(_src1, _src2, _dst), rowsPerWI = dev.isIntel() ? 4 : 1; // Workaround for bug with "?:" operator in AMD OpenCL compiler if (depth1 >= CV_16U) kercn = 1; int scalarcn = kercn == 3 ? 4 : kercn; const char * const operationMap[] = { "==", ">", ">=", "<", "<=", "!=" }; char cvt[40]; String opts = format("-D %s -D srcT1=%s -D dstT=%s -D workT=srcT1 -D cn=%d" " -D convertToDT=%s -D OP_CMP -D CMP_OPERATOR=%s -D srcT1_C1=%s" " -D srcT2_C1=%s -D dstT_C1=%s -D workST=%s -D rowsPerWI=%d%s", haveScalar ? "UNARY_OP" : "BINARY_OP", ocl::typeToStr(CV_MAKE_TYPE(depth1, kercn)), ocl::typeToStr(CV_8UC(kercn)), kercn, ocl::convertTypeStr(depth1, CV_8U, kercn, cvt), operationMap[op], ocl::typeToStr(depth1), ocl::typeToStr(depth1), ocl::typeToStr(CV_8U), ocl::typeToStr(CV_MAKE_TYPE(depth1, scalarcn)), rowsPerWI, doubleSupport ? " -D DOUBLE_SUPPORT" : ""); ocl::Kernel k("KF", ocl::core::arithm_oclsrc, opts); if (k.empty()) return false; UMat src1 = _src1.getUMat(); Size size = src1.size(); _dst.create(size, CV_8UC(cn)); UMat dst = _dst.getUMat(); if (haveScalar) { size_t esz = CV_ELEM_SIZE1(type1) * scalarcn; double buf[4] = { 0, 0, 0, 0 }; Mat src2 = _src2.getMat(); if( depth1 > CV_32S ) convertAndUnrollScalar( src2, depth1, (uchar *)buf, kercn ); else { double fval = 0; getConvertFunc(depth2, CV_64F)(src2.data, 1, 0, 1, (uchar *)&fval, 1, Size(1, 1), 0); if( fval < getMinVal(depth1) ) return dst.setTo(Scalar::all(op == CMP_GT || op == CMP_GE || op == CMP_NE ? 255 : 0)), true; if( fval > getMaxVal(depth1) ) return dst.setTo(Scalar::all(op == CMP_LT || op == CMP_LE || op == CMP_NE ? 255 : 0)), true; int ival = cvRound(fval); if( fval != ival ) { if( op == CMP_LT || op == CMP_GE ) ival = cvCeil(fval); else if( op == CMP_LE || op == CMP_GT ) ival = cvFloor(fval); else return dst.setTo(Scalar::all(op == CMP_NE ? 255 : 0)), true; } convertAndUnrollScalar(Mat(1, 1, CV_32S, &ival), depth1, (uchar *)buf, kercn); } ocl::KernelArg scalararg = ocl::KernelArg(0, 0, 0, 0, buf, esz); k.args(ocl::KernelArg::ReadOnlyNoSize(src1, cn, kercn), ocl::KernelArg::WriteOnly(dst, cn, kercn), scalararg); } else { UMat src2 = _src2.getUMat(); k.args(ocl::KernelArg::ReadOnlyNoSize(src1), ocl::KernelArg::ReadOnlyNoSize(src2), ocl::KernelArg::WriteOnly(dst, cn, kercn)); } size_t globalsize[2] = { dst.cols * cn / kercn, (dst.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } #endif } void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op) { CV_Assert( op == CMP_LT || op == CMP_LE || op == CMP_EQ || op == CMP_NE || op == CMP_GE || op == CMP_GT ); bool haveScalar = false; if ((_src1.isMatx() + _src2.isMatx()) == 1 || !_src1.sameSize(_src2) || _src1.type() != _src2.type()) { if (checkScalar(_src1, _src2.type(), _src1.kind(), _src2.kind())) { op = op == CMP_LT ? CMP_GT : op == CMP_LE ? CMP_GE : op == CMP_GE ? CMP_LE : op == CMP_GT ? CMP_LT : op; // src1 is a scalar; swap it with src2 compare(_src2, _src1, _dst, op); return; } else if( !checkScalar(_src2, _src1.type(), _src2.kind(), _src1.kind()) ) CV_Error( CV_StsUnmatchedSizes, "The operation is neither 'array op array' (where arrays have the same size and the same type), " "nor 'array op scalar', nor 'scalar op array'" ); haveScalar = true; } CV_OCL_RUN(_src1.dims() <= 2 && _src2.dims() <= 2 && _dst.isUMat(), ocl_compare(_src1, _src2, _dst, op, haveScalar)) int kind1 = _src1.kind(), kind2 = _src2.kind(); Mat src1 = _src1.getMat(), src2 = _src2.getMat(); if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 && src1.size() == src2.size() && src1.type() == src2.type() ) { int cn = src1.channels(); _dst.create(src1.size(), CV_8UC(cn)); Mat dst = _dst.getMat(); Size sz = getContinuousSize(src1, src2, dst, src1.channels()); getCmpFunc(src1.depth())(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op); return; } int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth(); _dst.create(src1.dims, src1.size, CV_8UC(cn)); src1 = src1.reshape(1); src2 = src2.reshape(1); Mat dst = _dst.getMat().reshape(1); size_t esz = src1.elemSize(); size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz; BinaryFunc func = getCmpFunc(depth1); if( !haveScalar ) { const Mat* arrays[] = { &src1, &src2, &dst, 0 }; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); size_t total = it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func( ptrs[0], 0, ptrs[1], 0, ptrs[2], 0, Size((int)total, 1), &op ); } else { const Mat* arrays[] = { &src1, &dst, 0 }; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = std::min(total, blocksize0); AutoBuffer _buf(blocksize*esz); uchar *buf = _buf; if( depth1 > CV_32S ) convertAndUnrollScalar( src2, depth1, buf, blocksize ); else { double fval=0; getConvertFunc(depth2, CV_64F)(src2.data, 1, 0, 1, (uchar*)&fval, 1, Size(1,1), 0); if( fval < getMinVal(depth1) ) { dst = Scalar::all(op == CMP_GT || op == CMP_GE || op == CMP_NE ? 255 : 0); return; } if( fval > getMaxVal(depth1) ) { dst = Scalar::all(op == CMP_LT || op == CMP_LE || op == CMP_NE ? 255 : 0); return; } int ival = cvRound(fval); if( fval != ival ) { if( op == CMP_LT || op == CMP_GE ) ival = cvCeil(fval); else if( op == CMP_LE || op == CMP_GT ) ival = cvFloor(fval); else { dst = Scalar::all(op == CMP_NE ? 255 : 0); return; } } convertAndUnrollScalar(Mat(1, 1, CV_32S, &ival), depth1, buf, blocksize); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); func( ptrs[0], 0, buf, 0, ptrs[1], 0, Size(bsz, 1), &op); ptrs[0] += bsz*esz; ptrs[1] += bsz; } } } } /****************************************************************************************\ * inRange * \****************************************************************************************/ namespace cv { template static void inRange_(const T* src1, size_t step1, const T* src2, size_t step2, const T* src3, size_t step3, uchar* dst, size_t step, Size size) { step1 /= sizeof(src1[0]); step2 /= sizeof(src2[0]); step3 /= sizeof(src3[0]); for( ; size.height--; src1 += step1, src2 += step2, src3 += step3, dst += step ) { int x = 0; #if CV_ENABLE_UNROLLED for( ; x <= size.width - 4; x += 4 ) { int t0, t1; t0 = src2[x] <= src1[x] && src1[x] <= src3[x]; t1 = src2[x+1] <= src1[x+1] && src1[x+1] <= src3[x+1]; dst[x] = (uchar)-t0; dst[x+1] = (uchar)-t1; t0 = src2[x+2] <= src1[x+2] && src1[x+2] <= src3[x+2]; t1 = src2[x+3] <= src1[x+3] && src1[x+3] <= src3[x+3]; dst[x+2] = (uchar)-t0; dst[x+3] = (uchar)-t1; } #endif for( ; x < size.width; x++ ) dst[x] = (uchar)-(src2[x] <= src1[x] && src1[x] <= src3[x]); } } static void inRange8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, const uchar* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRange8s(const schar* src1, size_t step1, const schar* src2, size_t step2, const schar* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRange16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2, const ushort* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRange16s(const short* src1, size_t step1, const short* src2, size_t step2, const short* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRange32s(const int* src1, size_t step1, const int* src2, size_t step2, const int* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRange32f(const float* src1, size_t step1, const float* src2, size_t step2, const float* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRange64f(const double* src1, size_t step1, const double* src2, size_t step2, const double* src3, size_t step3, uchar* dst, size_t step, Size size) { inRange_(src1, step1, src2, step2, src3, step3, dst, step, size); } static void inRangeReduce(const uchar* src, uchar* dst, size_t len, int cn) { int k = cn % 4 ? cn % 4 : 4; size_t i, j; if( k == 1 ) for( i = j = 0; i < len; i++, j += cn ) dst[i] = src[j]; else if( k == 2 ) for( i = j = 0; i < len; i++, j += cn ) dst[i] = src[j] & src[j+1]; else if( k == 3 ) for( i = j = 0; i < len; i++, j += cn ) dst[i] = src[j] & src[j+1] & src[j+2]; else for( i = j = 0; i < len; i++, j += cn ) dst[i] = src[j] & src[j+1] & src[j+2] & src[j+3]; for( ; k < cn; k += 4 ) { for( i = 0, j = k; i < len; i++, j += cn ) dst[i] &= src[j] & src[j+1] & src[j+2] & src[j+3]; } } typedef void (*InRangeFunc)( const uchar* src1, size_t step1, const uchar* src2, size_t step2, const uchar* src3, size_t step3, uchar* dst, size_t step, Size sz ); static InRangeFunc getInRangeFunc(int depth) { static InRangeFunc inRangeTab[] = { (InRangeFunc)GET_OPTIMIZED(inRange8u), (InRangeFunc)GET_OPTIMIZED(inRange8s), (InRangeFunc)GET_OPTIMIZED(inRange16u), (InRangeFunc)GET_OPTIMIZED(inRange16s), (InRangeFunc)GET_OPTIMIZED(inRange32s), (InRangeFunc)GET_OPTIMIZED(inRange32f), (InRangeFunc)inRange64f, 0 }; return inRangeTab[depth]; } #ifdef HAVE_OPENCL static bool ocl_inRange( InputArray _src, InputArray _lowerb, InputArray _upperb, OutputArray _dst ) { const ocl::Device & d = ocl::Device::getDefault(); int skind = _src.kind(), lkind = _lowerb.kind(), ukind = _upperb.kind(); Size ssize = _src.size(), lsize = _lowerb.size(), usize = _upperb.size(); int stype = _src.type(), ltype = _lowerb.type(), utype = _upperb.type(); int sdepth = CV_MAT_DEPTH(stype), ldepth = CV_MAT_DEPTH(ltype), udepth = CV_MAT_DEPTH(utype); int cn = CV_MAT_CN(stype), rowsPerWI = d.isIntel() ? 4 : 1; bool lbScalar = false, ubScalar = false; if( (lkind == _InputArray::MATX && skind != _InputArray::MATX) || ssize != lsize || stype != ltype ) { if( !checkScalar(_lowerb, stype, lkind, skind) ) CV_Error( CV_StsUnmatchedSizes, "The lower bounary is neither an array of the same size and same type as src, nor a scalar"); lbScalar = true; } if( (ukind == _InputArray::MATX && skind != _InputArray::MATX) || ssize != usize || stype != utype ) { if( !checkScalar(_upperb, stype, ukind, skind) ) CV_Error( CV_StsUnmatchedSizes, "The upper bounary is neither an array of the same size and same type as src, nor a scalar"); ubScalar = true; } if (lbScalar != ubScalar) return false; bool doubleSupport = d.doubleFPConfig() > 0, haveScalar = lbScalar && ubScalar; if ( (!doubleSupport && sdepth == CV_64F) || (!haveScalar && (sdepth != ldepth || sdepth != udepth)) ) return false; ocl::Kernel ker("inrange", ocl::core::inrange_oclsrc, format("%s-D cn=%d -D T=%s%s", haveScalar ? "-D HAVE_SCALAR " : "", cn, ocl::typeToStr(sdepth), doubleSupport ? " -D DOUBLE_SUPPORT" : "")); if (ker.empty()) return false; _dst.create(ssize, CV_8UC1); UMat src = _src.getUMat(), dst = _dst.getUMat(), lscalaru, uscalaru; Mat lscalar, uscalar; if (lbScalar && ubScalar) { lscalar = _lowerb.getMat(); uscalar = _upperb.getMat(); size_t esz = src.elemSize(); size_t blocksize = 36; AutoBuffer _buf(blocksize*(((int)lbScalar + (int)ubScalar)*esz + cn) + 2*cn*sizeof(int) + 128); uchar *buf = alignPtr(_buf + blocksize*cn, 16); if( ldepth != sdepth && sdepth < CV_32S ) { int* ilbuf = (int*)alignPtr(buf + blocksize*esz, 16); int* iubuf = ilbuf + cn; BinaryFunc sccvtfunc = getConvertFunc(ldepth, CV_32S); sccvtfunc(lscalar.data, 1, 0, 1, (uchar*)ilbuf, 1, Size(cn, 1), 0); sccvtfunc(uscalar.data, 1, 0, 1, (uchar*)iubuf, 1, Size(cn, 1), 0); int minval = cvRound(getMinVal(sdepth)), maxval = cvRound(getMaxVal(sdepth)); for( int k = 0; k < cn; k++ ) { if( ilbuf[k] > iubuf[k] || ilbuf[k] > maxval || iubuf[k] < minval ) ilbuf[k] = minval+1, iubuf[k] = minval; } lscalar = Mat(cn, 1, CV_32S, ilbuf); uscalar = Mat(cn, 1, CV_32S, iubuf); } lscalar.convertTo(lscalar, stype); uscalar.convertTo(uscalar, stype); } else { lscalaru = _lowerb.getUMat(); uscalaru = _upperb.getUMat(); } ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dstarg = ocl::KernelArg::WriteOnly(dst); if (haveScalar) { lscalar.copyTo(lscalaru); uscalar.copyTo(uscalaru); ker.args(srcarg, dstarg, ocl::KernelArg::PtrReadOnly(lscalaru), ocl::KernelArg::PtrReadOnly(uscalaru), rowsPerWI); } else ker.args(srcarg, dstarg, ocl::KernelArg::ReadOnlyNoSize(lscalaru), ocl::KernelArg::ReadOnlyNoSize(uscalaru), rowsPerWI); size_t globalsize[2] = { ssize.width, (ssize.height + rowsPerWI - 1) / rowsPerWI }; return ker.run(2, globalsize, NULL, false); } #endif } void cv::inRange(InputArray _src, InputArray _lowerb, InputArray _upperb, OutputArray _dst) { CV_OCL_RUN(_src.dims() <= 2 && _lowerb.dims() <= 2 && _upperb.dims() <= 2 && _dst.isUMat(), ocl_inRange(_src, _lowerb, _upperb, _dst)) int skind = _src.kind(), lkind = _lowerb.kind(), ukind = _upperb.kind(); Mat src = _src.getMat(), lb = _lowerb.getMat(), ub = _upperb.getMat(); bool lbScalar = false, ubScalar = false; if( (lkind == _InputArray::MATX && skind != _InputArray::MATX) || src.size != lb.size || src.type() != lb.type() ) { if( !checkScalar(lb, src.type(), lkind, skind) ) CV_Error( CV_StsUnmatchedSizes, "The lower bounary is neither an array of the same size and same type as src, nor a scalar"); lbScalar = true; } if( (ukind == _InputArray::MATX && skind != _InputArray::MATX) || src.size != ub.size || src.type() != ub.type() ) { if( !checkScalar(ub, src.type(), ukind, skind) ) CV_Error( CV_StsUnmatchedSizes, "The upper bounary is neither an array of the same size and same type as src, nor a scalar"); ubScalar = true; } CV_Assert(lbScalar == ubScalar); int cn = src.channels(), depth = src.depth(); size_t esz = src.elemSize(); size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz; _dst.create(src.dims, src.size, CV_8UC1); Mat dst = _dst.getMat(); InRangeFunc func = getInRangeFunc(depth); const Mat* arrays_sc[] = { &src, &dst, 0 }; const Mat* arrays_nosc[] = { &src, &dst, &lb, &ub, 0 }; uchar* ptrs[4]; NAryMatIterator it(lbScalar && ubScalar ? arrays_sc : arrays_nosc, ptrs); size_t total = it.size, blocksize = std::min(total, blocksize0); AutoBuffer _buf(blocksize*(((int)lbScalar + (int)ubScalar)*esz + cn) + 2*cn*sizeof(int) + 128); uchar *buf = _buf, *mbuf = buf, *lbuf = 0, *ubuf = 0; buf = alignPtr(buf + blocksize*cn, 16); if( lbScalar && ubScalar ) { lbuf = buf; ubuf = buf = alignPtr(buf + blocksize*esz, 16); CV_Assert( lb.type() == ub.type() ); int scdepth = lb.depth(); if( scdepth != depth && depth < CV_32S ) { int* ilbuf = (int*)alignPtr(buf + blocksize*esz, 16); int* iubuf = ilbuf + cn; BinaryFunc sccvtfunc = getConvertFunc(scdepth, CV_32S); sccvtfunc(lb.data, 1, 0, 1, (uchar*)ilbuf, 1, Size(cn, 1), 0); sccvtfunc(ub.data, 1, 0, 1, (uchar*)iubuf, 1, Size(cn, 1), 0); int minval = cvRound(getMinVal(depth)), maxval = cvRound(getMaxVal(depth)); for( int k = 0; k < cn; k++ ) { if( ilbuf[k] > iubuf[k] || ilbuf[k] > maxval || iubuf[k] < minval ) ilbuf[k] = minval+1, iubuf[k] = minval; } lb = Mat(cn, 1, CV_32S, ilbuf); ub = Mat(cn, 1, CV_32S, iubuf); } convertAndUnrollScalar( lb, src.type(), lbuf, blocksize ); convertAndUnrollScalar( ub, src.type(), ubuf, blocksize ); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); size_t delta = bsz*esz; uchar *lptr = lbuf, *uptr = ubuf; if( !lbScalar ) { lptr = ptrs[2]; ptrs[2] += delta; } if( !ubScalar ) { int idx = !lbScalar ? 3 : 2; uptr = ptrs[idx]; ptrs[idx] += delta; } func( ptrs[0], 0, lptr, 0, uptr, 0, cn == 1 ? ptrs[1] : mbuf, 0, Size(bsz*cn, 1)); if( cn > 1 ) inRangeReduce(mbuf, ptrs[1], bsz, cn); ptrs[0] += delta; ptrs[1] += bsz; } } } /****************************************************************************************\ * Earlier API: cvAdd etc. * \****************************************************************************************/ CV_IMPL void cvNot( const CvArr* srcarr, CvArr* dstarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( src.size == dst.size && src.type() == dst.type() ); cv::bitwise_not( src, dst ); } CV_IMPL void cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_and( src1, src2, dst, mask ); } CV_IMPL void cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_or( src1, src2, dst, mask ); } CV_IMPL void cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_xor( src1, src2, dst, mask ); } CV_IMPL void cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src.size == dst.size && src.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_and( src, (const cv::Scalar&)s, dst, mask ); } CV_IMPL void cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src.size == dst.size && src.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_or( src, (const cv::Scalar&)s, dst, mask ); } CV_IMPL void cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src.size == dst.size && src.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_xor( src, (const cv::Scalar&)s, dst, mask ); } CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::add( src1, src2, dst, mask, dst.type() ); } CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::subtract( src1, src2, dst, mask, dst.type() ); } CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::add( src1, (const cv::Scalar&)value, dst, mask, dst.type() ); } CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::subtract( (const cv::Scalar&)value, src1, dst, mask, dst.type() ); } CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, double scale ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() ); cv::multiply( src1, src2, dst, scale, dst.type() ); } CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, double scale ) { cv::Mat src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src2.size == dst.size && src2.channels() == dst.channels() ); if( srcarr1 ) cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale, dst.type() ); else cv::divide( scale, src2, dst, dst.type() ); } CV_IMPL void cvAddWeighted( const CvArr* srcarr1, double alpha, const CvArr* srcarr2, double beta, double gamma, CvArr* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() ); cv::addWeighted( src1, alpha, src2, beta, gamma, dst, dst.type() ); } CV_IMPL void cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); cv::absdiff( src1, (const cv::Scalar&)scalar, dst ); } CV_IMPL void cvInRange( const void* srcarr1, const void* srcarr2, const void* srcarr3, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && dst.type() == CV_8U ); cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst ); } CV_IMPL void cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && dst.type() == CV_8U ); cv::inRange( src1, (const cv::Scalar&)lowerb, (const cv::Scalar&)upperb, dst ); } CV_IMPL void cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && dst.type() == CV_8U ); cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op ); } CV_IMPL void cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && dst.type() == CV_8U ); cv::compare( src1, value, dst, cmp_op ); } CV_IMPL void cvMin( const void* srcarr1, const void* srcarr2, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); cv::min( src1, cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvMax( const void* srcarr1, const void* srcarr2, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); cv::max( src1, cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvMinS( const void* srcarr1, double value, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); cv::min( src1, value, dst ); } CV_IMPL void cvMaxS( const void* srcarr1, double value, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size == dst.size && src1.type() == dst.type() ); cv::max( src1, value, dst ); } /* End of file. */