
Pyramidal Implementation of the Lucas Kanade Feature Tracker
Description of the algorithm

Jean-Yves Bouguet

Intel Corporation

Microprocessor Research Labs

jean-yves.bouguet@intel.com

1 Problem Statement
Let I and J be two 2D grayscaled images. The two quantities I(x) = I(x, y) and J(x) = J(x, y) are then the

grayscale value of the two images are the location x = [x y]T , where x and y are the two pixel coordinates of a generic
image point x. The image I will sometimes be referenced as the first image, and the image J as the second image.
For practical issues, the images I and J are discret function (or arrays), and the upper left corner pixel coordinate
vector is [0 0]T . Let nx and ny be the width and height of the two images. Then the lower right pixel coordinate
vector is [nx − 1 ny − 1]T .
Consider an image point u = [ux uy]T on the first image I. The goal of feature tracking is to find the location
v = u + d = [ux+dx uy +dy]T on the second image J such as I(u) and J(v) are “similar”. The vector d = [dx dy]T

is the image velocity at x, also known as the optical flow at x. Because of the aperture problem, it is essential to
define the notion of similarity in a 2D neighborhood sense. Let ωx and ωy two integers. We define the image velocity
d as being the vector that minimizes the residual function ε defined as follows:

ε(d) = ε(dx, dy) =
ux+ωx∑

x=ux−ωx

uy+ωy∑
y=uy−ωy

(I(x, y)− J(x+ dx, y + dy))2
. (1)

Observe that following that defintion, the similarity function is measured on a image neighborhood of size (2ωx +
1)× (2ωy + 1). This neighborhood will be also called integration window. Typical values for ωx and ωy are 2,3,4,5,6,7
pixels.

2 Description of the tracking algorithm
The two key components to any feature tracker are accuracy and robustness. The accuracy component relates to

the local sub-pixel accuracy attached to tracking. Intuitively, a small integration window would be preferable in order
not to “smooth out” the details contained in the images (i.e. small values of ωx and ωy). That is especially required
at occluding areas in the images where two patchs potentially move with very different velocities.

The robustness component relates to sensitivity of tracking with respect to changes of lighting, size of image
motion,... In particular, in oder to handle large motions, it is intuively preferable to pick a large integration window.
Indeed, considering only equation 1, it is preferable to have dx ≤ ωx and dy ≤ ωy (unless some prior matching
information is available). There is therefore a natural tradeoff between local accuracy and robustness when choosing
the integration window size. In provide to provide a solution to that problem, we propose a pyramidal implementation
of the classical Lucas-Kanade algorithm. An iterative implementation of the Lucas-Kanade optical flow computation
provides sufficient local tracking accuracy.
2.1 Image pyramid representation

Let us define the pyramid representsation of a generic image I of size nx × ny. Let I0 = I be the “zeroth” level
image. This image is essentially the highest resolution image (the raw image). The image width and height at that
level are defined as n0

x = nx and n0
y = ny. The pyramid representation is then built in a recursive fashion: compute

I1 from I0, then compute I2 from I1, and so on... Let L = 1, 2, . . . be a generic pyramidal level, and let IL−1 be
the image at level L − 1. Denote nL−1

x and nL−1
y the width and height of IL−1. The image IL−1 is then defined as

follows:

IL(x, y) =
1
4
IL−1(2x, 2y) +

1
8
(
IL−1(2x− 1, 2y) + IL−1(2x+ 1, 2y) + IL−1(2x, 2y − 1) + IL−1(2x, 2y + 1)

)
+

1
16
(
IL−1(2x− 1, 2y − 1) + IL−1(2x+ 1, 2y + 1) + IL−1(2x− 1, 2y + 1) + IL−1(2x+ 1, 2y + 1)

)
.

(2)

1



For simplicity in the notation, let us define dummy image values one pixel around the image IL−1 (for 0 ≤ x ≤ nL−1
x −1

and 0 ≤ y ≤ nL−1
y − 1):

IL−1(−1, y) .= IL−1(0, y),
IL−1(x,−1) .= IL−1(x, 0),

IL−1(nL−1
x , y) .= IL−1(nL−1

x − 1, y),
IL−1(x, nL−1

y ) .= IL−1(x, nL−1
y − 1),

IL−1(nL−1
x , nL−1

y ) .= IL−1(nL−1
x − 1, nL−1

y − 1).

Then, equation 2 is only defined for values of x and y such that 0 ≤ 2x ≤ nL−1
x −1 and 0 ≤ 2y ≤ nL−1

y −1. Therefore,
the width nLx and height nLy of IL are the largest integers that satisfy the two conditions:

nLx ≤ nL−1
x + 1

2
, (3)

nLy ≤
nL−1
y + 1

2
. (4)

Equations (2), (3) and (4) are used to construct recursively the pyramidal representations of the two images I and
J :
{
IL
}
L=0,...,Lm

and
{
JL
}
L=0,...,Lm

. The value Lm is the height of the pyramid (picked heuristically). Practical
values of Lm are 2,3,4. For typical image sizes, it makes no sense to go above a level 4. For example, for an image I
of size 640× 480, the images I1, I2, I3 and I4 are of respective sizes 320× 240, 160× 120, 80× 60 and 40× 30. Going
beyond level 4 does not make much sense in most cases. The central motivation behind pyramidal representation is
to be able to handle large pixel motions (larger than the integration window sizes ωx and ωy). Therefore the pyramid
height (Lm) should also be picked appropriately according to the maximum expected optical flow in the image. The
next section describing the tracking operation in detail we let us understand that concept better. Final observation:
equation 2 suggests that the lowpass filter [1/4 1/2 1/4]× [1/4 1/2 1/4]T is used for image anti-aliasing before image
subsampling. In practice however (in the C code) a larger anti-aliasing filter kernel is used for pyramid construction
[1/16 1/4 3/8 1/4 1/16]× [1/16 1/4 3/8 1/4 1/16]T . The formalism remains the same.
2.2 Pyramidal Feature Tracking

Recall the goal of feature tracking: for a given point u in image I, find its corresponding location v = u + d in
image J , or alternatively find its pixel displacement vector d (see equation 1).

For L = 0, ..., Lm, define uL = [uLx uLy ], the corresponding coordinates of the point u on the pyramidal images
IL. Following our definition of the pyramid representation equations (2), (3) and (4), the vectors uL are computed
as follows:

uL =
u
2L
. (5)

The division operation in equation 5 is applied to both coordinates independently (so will be the multiplication
operations appearing in subsequent equations). Observe that in particular, u0 = u.

The overall pyramidal tracking algorithm proceeds as follows: first, the optical flow is comptuted at the deepest
pyramid level Lm. Then, the result of the that computation is propagated to the upper level Lm − 1 in a form of an
initial guess for the pixel displacement (at level Lm−1). Given that initial guess, the refined optical flow is computed
at level Lm − 1, and the result is propagated to level Lm − 2 and so on up to the level 0 (the original image).

Let us now describe the recursive operation between two generics levels L+ 1 and L in more mathematical details.
Assume that an initial guess for optical flow at level L, gL = [gLx gLy ]T is available from the computations done from
level Lm to level L+ 1. Then, in order to compute the optical flow at level L, it is necessary to find the residual pixel
displacement vector dL = [dLx dLy ]T that minimizes the new image matching error function εL:

εL(dL) = εL(dLx , d
L
y ) =

uLx+ωx∑
x=uLx−ωx

uLy+ωy∑
y=uLy−ωy

(
IL(x, y)− JL(x+ gLx + dLx , y + gLy + dLy )

)2
. (6)

Observe that the window of integration is of constant size (2ωx + 1)× (2ωy + 1) for all values of L. Notice that the
initial guess flow vector gL is used to pre-translate the image patch in the second image J . That way, the residual
flow vector dL = [dLx dLy ]T is small and therefore easy to compute through a standard Lucas Kanade step.

2



The details of computation of the residual optical flow dL will be described in the next section 2.3. For now, let us
assume that this vector is computed (to close the main loop of the algorithm). Then, the result of this computation
is propagated to the next level L− 1 by passing the new initial guess gL−1 of expression:

gL−1 = 2 (gL + dL). (7)

The next level optical flow residual vector dL−1 is then computed through the same procedure. This vector, computed
by optical flow computation (decribed in Section 2.3), minimizes the functional εL−1(dL−1) (equation 6). This
procedure goes on until the finest image resolution is reached (L = 0). The algorithm is initialized by setting the
initial guess for level Lm to zero (no initial guess is available at the deepest level of the pyramid):

gLm = [0 0]T . (8)

The final optical flow solution d (refer to equation 1) is then available after the finest optical flow computation:

d = g0 + d0. (9)

Observe that this solution may be expressed in the following extended form:

d =
Lm∑
L=0

2L dL. (10)

The clear advantage of a pyramidal implementation is that each residual optical flow vector dL can be kept very small
while computing a large overall pixel displacement vector d. Assuming that each elementary optical flow computation
step can handle pixel motions up to dmax, then the overall pixel motion that the pyramidal implementation can handle
becomes dmax final = (2Lm+1 − 1) dmax. For example, for a pyramid depth of Lm = 3, this means a maximum pixel
displacement gain of 15! This enables large pixel motions, while keeping the size of the integration window relatively
small.
2.3 Iterative Optical Flow Computation (Iterative Lucas-Kanade)

Let us now describe the core optical flow computation. At every level L in the pyramid, the goal is finding the
vector dL that minimizes the matching function εL defined in equation 6. Since the same type of operation is per-
formed for all levels L, let us now drop the superscripts L and define the new images A and B as follows:

∀(x, y) ∈ [px − ωx − 1, px + ωx + 1]× [py − ωy − 1, py + ωy + 1],

A(x, y) .= IL(x, y), (11)

∀(x, y) ∈ [px − ωx, px + ωx]× [py − ωy, py + ωy],

B(x, y) .= JL(x+ gLx , y + gLy ). (12)

Observe that the domains of definition of A(x, y) and B(x, y) are slightly different. Indeed, A(x, y) is defined over a
window of size (2ωx+3)×(2ωy+3) instead of (2ωx+1)×(2ωy+1). This difference will become clear when computing
spatial derivatives of A(x, y) using the central difference operator (eqs. 19 and 20). For clarity purposes, let us change
the name of the displacement vector ν = [νx νy]T = dL, as well as the image position vector p = [px py]T = uL.
Following that new notation, the goal is to find the displacement vector ν = [νx νy]T that minimizes the matching
function:

ε(ν) = ε(νx, νy) =
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

(A(x, y)−B(x+ νx, y + νy))2
. (13)

A standard iterative Lucas-Kanade may be applied for that task. At the optimimum, the first derivative of ε with
respect to ν is zero:

∂ε(ν)
∂ν

∣∣∣∣
ν=νopt

= [0 0]. (14)

After expansion of the derivative, we obtain:

∂ε(ν)
∂ν

= −2
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

(A(x, y)−B(x+ νx, y + νy)) .
[

∂B
∂x

∂B
∂y

]
. (15)

3



Let us now substitute B(x + νx, y + νy) by its first order Taylor expansion about the point ν = [0 0]T (this has a
good chance to be a valid approximation since we are expecting a small displacement vector, thanks to the pyramidal
scheme):

∂ε(ν)
∂ν

≈ −2
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

(
A(x, y)−B(x, y)−

[
∂B
∂x

∂B
∂y

]
ν
)
.
[

∂B
∂x

∂B
∂y

]
. (16)

Observe that the quatity A(x, y)−B(x, y) can be interpreted as the temporal image derivative at the point [x y]T :

∀(x, y) ∈ [px − ωx, px + ωx]× [py − ωy, py + ωy],

δI(x, y) .= A(x, y)−B(x, y). (17)

The matrix
[

∂B
∂x

∂B
∂y

]
is merely the image gradient vector. Let’s make a slight change of notation:

∇I =
[
Ix
Iy

]
.=
[

∂B
∂x

∂B
∂y

]T
. (18)

Observe that the image derivatives Ix and Iy may be computed directly from the first image A(x, y) in the (2ωx +
1) × (2ωy + 1) neighborhood of the point p independently from the second image B(x, y) (the importance of this
observation will become apparent later on when describing the iterative version of the flow computation). If a central
difference operator is used for derivative, the two derivative images have the following expression:

∀(x, y) ∈ [px − ωx, px + ωx]× [py − ωy, py + ωy],

Ix(x, y) =
∂A(x, y)
∂x

=
A(x+ 1, y)−A(x− 1, y)

2
, (19)

Iy(x, y) =
∂A(x, y)
∂y

=
A(x, y + 1)−A(x, y − 1)

2
. (20)

In practice, the Sharr operator is used for computing image derivatives (very similar to the central difference operator).
Following this new notation, equation 16 may be written:

1
2
∂ε(ν)
∂ν

≈
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

(
∇IT ν − δI

)
∇IT , (21)

1
2

[
∂ε(ν)
∂ν

]T
≈

px+ωx∑
x=px−ωx

py+ωy∑
y=py−ωy

([
I2
x Ix Iy

Ix Iy I2
y

]
ν −

[
δI Ix
δI Iy

])
. (22)

Denote

G
.=

px+ωx∑
x=px−ωx

py+ωy∑
y=py−ωy

[
I2
x Ix Iy

Ix Iy I2
y

]
and b

.=
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

[
δI Ix
δI Iy

]
. (23)

Then, equation 22 may be written:

1
2

[
∂ε(ν)
∂ν

]T
≈ Gν − b. (24)

Therefore, following equation 14, the optimimum optical flow vector is

νopt = G−1 b. (25)

This expression is valid only if the matrix G is invertible. That is equivalent to saying that the image A(x, y) contains
gradient information in both x and y directions in the neighborhood of the point p.

4



This is the standard Lucas-Kanade optical flow equation, which is valid only if the pixel displacement is small (in
order ot validate the first order Taylor expansion). In practice, to get an accurate solution, is is necessary to iterate
multiple times on this scheme (in a Newton-Raphson fashion).

Now that we have introduced the mathematical background, let us give the details of the iterative version of the
algorithm. Recall the goal: find the vector ν that minimizes the error functional ε(ν) introduced in equation 13.

Let k be the iterative index, initialized to 1 at the very first iteration. Let us describe the algorithm recursively:
at a generic iteration k ≥ 1, assume that the previous computations from iterations 1, 2, . . . , k − 1 provide an initial
guess νk−1 = [νk−1

x νk−1
x ]T for the pixel displacement ν. Let Bk be the new translated image according to that initial

guess νk−1:

∀(x, y) ∈ [px − ωx, px + ωx]× [py − ωy, py + ωy],

Bk(x, y) = B(x+ νk−1
x , y + νk−1

y ). (26)

The goal is then to compute the residual pixel motion vector ηk = [ηkx ηky ] that minimizes the error function

εk(ηk) = ε(ηkx, η
k
y ) =

px+ωx∑
x=px−ωx

py+ωy∑
y=py−ωy

(
A(x, y)−Bk(x+ ηkx, y + ηky )

)2
. (27)

The solution of this minimization may be computed through a one step Lucas-Kanade optical flow computation
(equation 25)

ηk = G−1 bk, (28)

where the 2× 1 vector bk is defined as follows (also called image mismatch vector):

bk =
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

[
δIk(x, y) Ix(x, y)
δIk(x, y) Iy(x, y)

]
, (29)

where the kth image difference δIk are defined as follows:

∀(x, y) ∈ [px − ωx, px + ωx]× [py − ωy, py + ωy],

δIk(x, y) = A(x, y)−Bk(x, y). (30)

Observe that the spatial derivatives Ix and Iy (at all points in the neighborhood of p) are computed only once at
the beginning of the iterations following equations 19 and 20. Therefore the 2 × 2 matrix G also remains constant
throughout the iteration loop (expression given in equation 23). That constitutes a clear computational advantage.
The only quantity that needs to be recomputed at each step k is the vector bk that really captures the amount of
residual difference between the image patches after translation by the vector νk−1. Once the residual optical flow ηk

is computed through equation 28, a new pixel displacement guess νk is computed for the next iteration step k + 1:

νk = νk−1 + ηk. (31)

The iterative scheme goes on until the computed pixel residual ηk is smaller than a threshold (for example 0.03
pixel), or a maximum number of iteration (for example 20) is reached. On average, 5 iterations are enough to reach
convergence. At the first iteration (k = 1) the initial guess is initialized to zero:

ν0 = [0 0]T . (32)

Assuming that K iterations were necessary to reach convergence, the final solution for the optical flow vector ν = dL

is:

ν = dL = νK =
K∑
k=1

ηk. (33)

This vector minimizes the error functional described in equation 13 (or equation 6). This ends the description of the
iterative Lucas-Kanade optical flow computation. The vector dL is fed to equation 7 and this overall procedure is
repeated at all subsequent levels L− 1, L− 2, . . . , 0 (see section 2.2).

5



2.4 Summary of the pyramidal tracking algorithm
Let is now summarize the entire tracking algorithm in a form of a pseudo-code. Find the details of the equations in
the main body of the text (especially for the domains of definition).

Goal: Let u be a point on image I. Find its corresponding location v on image J

Build pyramid representations of I and J : {IL}L=0,... ,Lm and {JL}L=0,... ,Lm (eqs. 2,3,4)

Initialization of pyramidal guess: gLm = [gLmx gLmx ]T = [0 0]T (eq. 8)

for L = Lm down to 0 with step of -1

Location of point u on image IL: uL = [px py]T = u/2L (eq. 5)

Derivative of IL with respect to x: Ix(x, y) =
IL(x+ 1, y)− IL(x− 1, y)

2
(eqs. 19,11)

Derivative of IL with respect to y: Iy(x, y) =
IL(x, y + 1)− IL(x, y − 1)

2
(eqs. 20,11)

Spatial gradient matrix: G =
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

[
I2
x(x, y) Ix(x, y) Iy(x, y)

Ix(x, y) Iy(x, y) I2
y (x, y)

]
(eq. 23)

Initialization of iterative L-K: ν0 = [0 0]T (eq. 32)

for k = 1 to K with step of 1 (or until ‖ηk‖ < accuracy threshold)

Image difference: δIk(x, y) = IL(x, y)− JL(x+ gLx + νk−1
x , y + gLy + νk−1

y ) (eqs. 30,26,12)

Image mismatch vector: bk =
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

[
δIk(x, y) Ix(x, y)
δIk(x, y) Iy(x, y)

]
(eq. 29)

Optical flow (Lucas-Kanade): ηk = G−1 bk (eq. 28)

Guess for next iteration: νk = νk−1 + ηk (eq. 31)

end of for-loop on k

Final optical flow at level L: dL = νK (eq. 33)

Guess for next level L− 1: gL−1 = [gL−1
x gL−1

y ]T = 2 (gL + dL) (eq. 7)

end of for-loop on L

Final optical flow vector: d = g0 + d0 (eq. 9)

Location of point on J : v = u + d

Solution: The corresponding point is at location v on image J

6



2.5 Subpixel Computation
It is absolutely essential to keep all computation at a subpixel accuracy level. It is therefore necessary to be able

to compute image brightness values at locations between integer pixels (refer for example to equations 11,12 and 26).
In order to compute image brightness at subpixel locations we propose to use bilinear interpolation.

Let L be a generic pyramid level. Assume that we need the image value IL(x, y) where x and y are not integers.
Let xo and yo be the integer parts of x and y (larger integers that are smallers than x and y). Let αx and αy be the
two reminder values (between 0 and 1) such that:

x = xo + αx, (34)
y = yo + αy. (35)

Then IL(x, y) may be computed by bilinear interpolation from the original image brightness values:

IL(x, y) = (1− αx) (1− αy) IL(xo, yo) + αx (1− αy) IL(xo + 1, yo) +
(1− αx)αy IL(xo, yo + 1) + αx αy I

L(xo + 1, yo + 1).

Let us make a few observations that are associated to subpixel computation (important implementation issues).
Refer to the summary of the algorithm given in section 2.4. When computing the two image derivatives Ix(x, y) and
Iy(x, y) in the neigborhood (x, y) ∈ [px−ωx, px +ωx]× [py−ωy, py +ωy], it is necessary to have the brightness values
of IL(x, y) in the neighborhood (x, y) ∈ [px − ωx − 1, px + ωx + 1]× [py − ωy − 1, py + ωy + 1] (see equations 19, 20).
Of course, the coordinates of the central point p = [px py]T are not garanteed to be integers. Call pxo and pyo the
integer parts of px and py. Then we may write:

px = pxo + pxα , (36)
py = pyo + pyα , (37)

where pxα and pyα are the associated reminder values between 0 and 1. Therefore, in order to compute the image
patch IL(x, y) in the neighborhood (x, y) ∈ [px − ωx − 1, px + ωx + 1] × [py − ωy − 1, py + ωy + 1] through bilinear
interpolation, it is necessary to use the set of original brightness values IL(x, y) in the integer grid patch (x, y) ∈
[pxo − ωx − 1, pxo + ωx + 2]× [pyo − ωy − 1, pyo + ωy + 2] (recall that ωx and ωy are integers).

A similar situation occurs when computing the image difference δIk(x, y) in the neigborhood (x, y) ∈ [px−ωx, px+
ωx]× [py − ωy, py + ωy] (refer to section 2.4). Indeed, in order to compute δIk(x, y), it is required to have the values
JL(x+ gLx + νk−1

x , y+ gLy + νk−1
y ) for all (x, y) ∈ [px − ωx, px + ωx]× [py − ωy, py + ωy], or, in other words, the values

of JL(α, β) for all (α, β) ∈ [px + gLx + νk−1
x − ωx, px + gLx + νk−1

x + ωx]× [py + gLy + νk−1
y − ωy, py + gLy + νk−1

y + ωy].
Of course, px + gLx + νk−1

x and py + gLy + νk−1
y are not necessarily integers. Call qxo and qyo the integer parts of

px + gLx + νk−1
x and py + gLy + νk−1

y :

px + gLx + νk−1
x = qxo + qxα , (38)

py + gLy + νk−1
y = qyo + qyα , (39)

where qxα and qyα are the associated reminder values between 0 and 1. Then, in order to compute the image patch
JL(α, β) in the neighborhood (α, β) ∈ [px+gLx +νk−1

x −ωx, px+gLx +νk−1
x +ωx]×[py+gLy +νk−1

y −ωy, py+gLy +νk−1
y +ωy],

it is necessary to use the set of original brightness values JL(α, β) in the integer grid patch (α, β) ∈ [qxo − ωx, qxo +
ωx + 1]× [qyo − ωy, qyo + ωy + 1].
2.6 Tracking features close to the boundary of the images

It is very useful to observe that it is possible to process points that are close enough to the image boundary to
have a portion of their integration window outside the image. This observation becomes very significant as the the
number of pyramid levels Lm is large. Indeed, if we always enforce the complete (2ωx + 1)× (2ωy + 1) window to be
within the image in order to be tracked, then there is “forbidden band” of width ωx (and ωy) all around the images
IL. If Lm is the height of the pyramid, this means an effective forbidden band of width 2Lm ωx (and 2Lm ωy) around
the original image I. For small values of ωx, ωy and Lm, this might not constitute a significant limitation, howerver,
this may become very troublesome for large integration window sizes, and more importantly, for large values of Lm.
Some numbers: ωx = ωy = 5 pixels, and Lm = 3 leads to a forbidden band of 40 pixels around the image!

In order to prevent this from happenning, we propose to keep tracking points whose integration windows partially
fall outside the image (at any pyramid level). In this case, the tracking procedure reamins the same, expect that the
summations appearing in all expressions (see pseudo-code of section 2.4) should be done only over the valid portion of
the image neigborhood, i.e. the portion of the neighborhood that have valid entries for Ix(x, y), Iy(x, y) and δIk(x, y)

7



(see section 2.4). Observe that doing so, the valid summation regions may vary while going through the Lucas-Kanade
iteration loop (loop over the index k in the pseudo-code - Sec. 2.4). Indeed, from iteration to iteration, the valid entry
of the the image difference δIk(x, y) may vary as the translation vector [gLx + νk−1

x gLy + νk−1
y ]T vary. In addition,

observe that when computing the mismatch vector bk and the gradient matrix G, the summations regions must be
identical (for the mathematics to remain valid). Therefore, in that case, the G matrix must be recomputed within
the loop at each iteration. The differential patches Ix(x, y) and Iy(x, y) may however be computed once before the
iteration loop.

Of course, if the point p = [px py]T (the center of the neighborhood) falls outside of the image IL, or if its
corresponding tracked point [px + gLx + νk−1

x py + gLy + νk−1
y ] falls outside of the image JL, it is reasonable to declare

the point “lost”, and not pursue tracking for it.
2.7 Declaring a feature “lost”

There are two cases that should give rise to a “lost” feature. The first case is very intuitive: the point falls outside
of the image. We have discussed this issue in section 2.6. The other case of loss is when the image patch around the
tracked point varies too much between image I and image J (the point disappears due to occlusion). Observe that
this condition is a lot more challenging to quantify precisely. For example, a feature point may be declared “lost” if
its final cost function ε(d) is larger than a threshold (see equation 1). A problem comes in when having decide about
a threshold. It is particularly sensitive when tracking a point over many images in a complete sequence. Indeed,
if tracking is done based on consecutive pairs of images, the tracked image patch (used as reference) is implicitely
initialized at every track. Consequently, the point may drift throughout the extended sequence even if the image
difference between two consecutive images is very small. This drift problem is a very classical issue when dealing with
long sequences. One approach is to track feature points through a sequence while keeping a fixed reference for the
appearance of the feature patch (use the first image the feature appeared). Following this technique, the quantity
ε(d) has a lot more meaning. While adopting this approach however another problem rises: a feature may be declared
“lost” too quickly. One direction that we envision to answer that problem is to use affine image matching for deciding
for lost track (see Shi and Tomasi in [1]).

The best technique known so far is to combine a traditional tracking approach presented so far (based on image
pairs) to compute matching, with an affine image matching (using a unique reference for feature patch) to decide for
false track. More information regarding this technique is presented by Shi and Tomasi in [1]. We believe that eventu-
ally, this approach should be implemented for rejection. It is worth observing that for 2D tracking itself, the standard
tracking scheme presented in this report performs a lot better (more accurate) that affine tracking alone. The reason
is that affine tracking requires to estimate a very large number of parameters: 6 instead of 2 for the standard scheme.
Many people have made that observation (see for example http://www.stanford.edu/ ssorkin/cs223b/final.html).
Therefore, affine tracking should only be considered for building a reliable rejection scheme on top of the main 2D
tracking engine.

3 Feature Selection
So far, we have described the tracking procedure that takes care of following a point u on an image I to another

location v on another image J . However, we have not described means to select the point u on I in the first place. This
step is called feature selection. It is very intuitive to approach the problem of feature selection once the mathematical
ground for tracking is led out. Indeed, the central step of tracking is the computation of the optical flow vector ηk

(see pseudo-code of algorithm in section 2.4). At that step, the G matrix is required to be invertible, or in other
words, the minimum eigenvalue of G must be large enough (larger than a threshold). This characterizes pixels that
are “easy to track”.

Therefore, the process of selection goes as follows:

1. Compute the G matrix and its minimum eigenvalue λm at every pixel in the image I.

2. Call λmax the maximum value of λm over the whole image.

3. Retain the image pixels that have a λm value larger than a percentage of λmax. This percentage can be 10% or
5%.

4. From those pixels, retain the local max. pixels (a pixel is kept if its λm value is larger than that of any other
pixel in its 3× 3 neighborhood).

5. Keep the subset of those pixels so that the minimum distance between any pair of pixels is larger than a given
threshold distance (e.g. 10 or 5 pixels).

8



After that process, the remaining pixels are typically “good to track”. They are the selected feature points that
are fed to the tracker.

The last step of the algorithm consisting of enforcing a minimum pairwise distance between pixels may be omited if
a very large number of points can be handled by the tracking engine. It all depends on the computational performances
of the feature tracker.

Finally, it is important to observe that it is not necessary to take a very large integration window for feature
selection (in order to compute the G matrix). In fact, a 3 × 3 window is sufficient ωx = ωx = 1 for selection, and
should be used. For tracking, this window size (3× 3) is typically too small (see section 1).

References
[1] Jianbo Shi and Carlo Tomasi, “Good features to track”, Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn., pages

593–600, 1994.

9


