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Abstract
As a first step towards a perceptual user interface, a
computer vision color tracking algorithm is developed and
applied towards tracking human faces. Computer vision
algorithms that are intended to form part of a perceptual
user interface must be fast and efficient. They must be
able to track in real time yet not absorb a major share of
computational resources: other tasks must be able to run
while the visual interface is being used. The new
algorithm developed here is based on a robust non-
parametric technique for climbing density gradients to
find the mode (peak) of probability distributions called the
mean shift algorithm. In our case, we want to find the
mode of a color distribution within a video scene.
Therefore, the mean shift  algorithm is modified to deal
with dynamically changing color probability distributions
derived from video frame sequences. The modified
algorithm is called the Continuously Adaptive Mean Shift
(CAMSHIFT) algorithm. CAMSHIFT’s tracking accuracy
is compared against a Polhemus tracker. Tolerance to
noise, distractors and performance is studied.

CAMSHIFT is then used as a computer interface for
controlling commercial computer games and for exploring
immersive 3D graphic worlds.

Introduction
This paper is part of a program to develop a Perceptual
User Interface for computers. Perceptual interfaces are
ones in which the computer is given the ability to sense
and produce analogs of the human senses, such as
allowing computers to perceive and produce localized
sound and speech, giving computers a sense of touch and
force feedback, and in our case, giving computers an
ability to see. The work described in this paper is part of a
larger effort aimed at giving computers the ability to
segment, track, and understand the pose, gestures, and
emotional expressions of humans and the tools they might
be using in front of a computer or settop box. In this paper
we describe the development of the first core module in

this effort: a 4-degree of freedom color object tracker and
its application to flesh-tone-based face tracking.

Computer vision face tracking is an active and developing
field, yet the face trackers that have been developed are
not sufficient for our needs. Elaborate methods such as
tracking contours with snakes [[10][12][13]], using
Eigenspace matching techniques [14], maintaining large
sets of statistical hypotheses [15], or convolving images
with feature detectors [16] are far too computationally
expensive. We want a tracker that will track a given face
in the presence of noise, other faces, and hand
movements. Moreover, it must run fast and efficiently so
that objects may be tracked in real time (30 frames per
second) while consuming as few system resources as
possible. In other words, this tracker should be able to
serve as part of a user interface that is in turn part of the
computational tasks that a computer might routinely be
expected to carry out. This tracker also needs to run on
inexpensive consumer cameras and not require calibrated
lenses.

In order, therefore, to find a fast, simple algorithm for
basic tracking, we have focused on color-based tracking
[[7][8][9][10][11]], yet even these simpler algorithms are
too computationally complex (and therefore slower at any
given CPU speed) due to their use of color correlation,
blob and region growing, Kalman filter smoothing and
prediction, and contour considerations. The complexity of
the these algorithms derives from their attempts to deal
with irregular object motion due to perspective (near
objects to the camera seem to move faster than distal
objects); image noise; distractors, such as other faces in
the scene; facial occlusion by hands or other objects; and
lighting variations. We want a fast, computationally
efficient algorithm that handles these problems in the
course of its operation, i.e., an algorithm that mitigates the
above problems “for free.”

To develop such an algorithm, we drew on ideas from
robust statistics and probability distributions. Robust
statistics are those that tend to ignore outliers in the data
(points far away from the region of interest). Thus, robust
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algorithms help compensate for noise and distractors in
the vision data. We therefore chose to use a robust non-
parametric technique for climbing density gradients to
find the mode of probability distributions called the mean
shift algorithm [2]. (The mean shift algorithm was never
intended to be used as a tracking algorithm, but it is quite
effective in this role.)

The mean shift algorithm operates on probability
distributions. To track colored objects in video frame
sequences, the color image data has to be represented as a
probability distribution [1]; we use color histograms to
accomplish this. Color distributions derived from video
image sequences change over time, so the mean shift
algorithm has to be modified to adapt dynamically to the
probability distribution it is tracking. The new algorithm
that meets all these requirements is called CAMSHIFT.

For face tracking, CAMSHIFT tracks the X, Y, and Area
of the flesh color probability distribution representing a
face. Area is proportional to Z, the distance from the
camera. Head roll is also tracked as a further degree of
freedom. We then use the X, Y, Z, and Roll derived from
CAMSHIFT face tracking as a perceptual user interface
for controlling commercial computer games and for
exploring 3D graphic virtual worlds.

Choose initial
search window

size and location
HSV Image

Set calculation
region at search
window center
but larger in
size than the
search window

Color histogram look-
up in calculation

region

Color probability
distribution

Find center of mass
within the search

window

Center search window
at the center of mass
and find area under it

ConvergedYES NOReport X,
Y, Z, and

Roll

Use (X,Y) to set
search window
center, 2*area1/2

to set size.

Figure 1: Block diagram of color object tracking

Figure 1 summarizes the algorithm described below. For
each video frame, the raw image is converted to a color
probability distribution image via a color histogram model
of the color being tracked (flesh for face tracking). The
center and size of the color object are found via the
CAMSHIFT algorithm operating on the color probability
image (the gray box is the mean shift algorithm). The
current size and location of the tracked object are reported
and used to set the size and location of the search window
in the next video image. The process is then repeated for
continuous tracking.

Video Demonstrations
The following three videos demonstrate CAMSHIFT in
action.

1. FaceTrack_Fast.avi

2. FaceTrack_Distractors.avi

3. FaceTrack_HandOcclusion.avi

The first video shows CAMSHIFT tracking rapid face
movements. The second video shows CAMSHIFT
tracking a face with other faces moving in the scene. The
third video shows CAMSHIFT tracking a face through
hand occlusions. These videos are available from this
paper on the Web in the Intel Technology Journal Q2’98
under the site http://developer.intel.com/technology/itj.

Color Probability Distributions
In order to use CAMSHIFT to track colored objects in a
video scene, a probability distribution image of the
desired color (flesh color in the case of face tracking) in
the video scene must be created. In order to do this, we
first create a model of the desired hue using a color
histogram. We use the Hue Saturation Value (HSV) color
system [5][6] that corresponds to projecting standard Red,
Green, Blue (RGB) color space along its principle
diagonal from white to black (see arrow in Figure 2). This
results in the hexcone in Figure 3. Descending the V axis
in Figure 3 gives us smaller hexcones corresponding to
smaller (darker) RGB subcubes in Figure 2.

HSV space separates out hue (color) from saturation (how
concentrated the color is) and from brightness. We create
our color models by taking 1D histograms from the H
(hue) channel in HSV space.

For face tracking via a flesh color model, flesh areas from
the user are sampled by prompting users to center their
face in an onscreen box, or by using motion cues to find
flesh areas from which to sample colors. The hues derived
from flesh pixels in the image are sampled from the H
channel and binned into an 1D histogram. When sampling
is complete, the histogram is saved for future use. More
robust histograms may be made by sampling flesh hues
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from multiple people. Even simple flesh histograms tend
to work well with a wide variety of people without having
to be updated. A common misconception is that different
color models are needed for different races of people, for
example, for blacks and whites. This is not true. Except
for albinos, humans are all the same color (hue). Dark-
skinned people simply have greater flesh color saturation
than light-skinned people, and this is separated out in the
HSV color system and ignored in our flesh-tracking color
model.

During operation, the stored flesh color histogram is used
as a model, or lookup table, to convert incoming video
pixels to a corresponding probability of flesh image as can
be seen in the right-hand image of Figure 6. This is done
for each video frame. Using this method, probabilities
range in discrete steps from zero (probability 0.0) to the
maximum probability pixel value (probability 1.0). For 8-
bit hues, this range is between 0 and 255. We then track
using CAMSHIFT on this probability of flesh image.

When using real cameras with discrete pixel values, a
problem can occur when using HSV space as can be seen
in Figure 3. When brightness is low (V near 0), saturation
is also low (S near 0). Hue then becomes quite noisy,
since in such a small hexcone, the small number of
discrete hue pixels cannot adequately represent slight
changes in RGB. This then leads to wild swings in hue
values. To overcome this problem, we simply ignore hue
pixels that have very low corresponding brightness values.
This means that for very dim scenes, the camera must
auto-adjust or be adjusted for more brightness or else it
simply cannot track. With sunlight, bright white colors can
take on a flesh hue so we also use an upper threshold to
ignore flesh hue pixels with corresponding high
brightness. At very low saturation, hue is not defined so
we also ignore hue pixels that have very low
corresponding saturation (see Implementation Details
section below).

Originally, we used a 2D color histogram built from
normalized red green (r,g) space (r = R/(R+G+B), g =
G/(R+G+B)). However, we found that such color models
are much more sensitive to lighting changes since
saturation (which is influenced by lighting) is not
separated out of that model.
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Figure 2: RGB color cube
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Figure 3: HSV color system

CAMSHIFT Derivation
The closest existing algorithm to CAMSHIFT is known as
the mean shift algorithm [2][18]. The mean shift algorithm
is a non-parametric technique that climbs the gradient of a
probability distribution to find the nearest dominant mode
(peak).

How to Calculate the Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location in the search window.
4. Center the search window at the mean location

computed in Step 3.
5. Repeat Steps 3 and 4 until convergence (or until the

mean location moves less than a preset threshold).

Proof of Convergence [18]
Assuming a Euclidean distribution space containing
distribution f, the proof is as follows reflecting the steps
above:
1. A window W is chosen at size s.
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2. The initial search window is centered at data point pk

3. Compute the mean position within the search window
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converges there.

For discrete 2D image probability distributions, the mean
location (the centroid) within the search window (Steps 3
and 4 above) is found as follows:

Find the zeroth moment
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where I(x,y) is the pixel (probability) value at position
(x,y) in the image, and x and y range over the search
window.

Unlike the Mean Shift algorithm, which is designed for
static distributions, CAMSHIFT is designed for
dynamically changing distributions. These occur when
objects in video sequences are being tracked and the
object moves so that the size and location of the
probability distribution changes in time. The CAMSHIFT
algorithm adjusts the search window size in the course of
its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data),
the minimum window size is three as explained in the
Implementation Details section. Instead of a set or
externally adapted window size, CAMSHIFT relies on the
zeroth moment information, extracted as part of the
internal workings of the algorithm, to continuously adapt
its window size within or over each video frame. One can
think of the zeroth moment as the distribution “area”

found under the search window. Thus, window radius, or
height and width, is set to a function of the the zeroth
moment found during search. The CAMSHIFT algorithm
is then calculated using any initial non-zero window size
(greater or equal to three if the distribution is discrete).

How to Calculate the Continuously Adaptive Mean
Shift Algorithm

1. Choose the initial location of the search window.
2. Mean Shift as above (one or many iterations); store

the zeroth moment.
3. Set the search window size equal to a function of the

zeroth moment found in Step 2.
4. Repeat Steps 2 and 3 until convergence (mean

location moves less than a preset threshold).

In Figure 4 below, CAMSHIFT is shown beginning the
search process at the top left step by step down the left
then right columns until convergence at bottom right. In
this figure, the red graph is a 1D cross-section of an actual
sub-sampled flesh color probability distribution of an
image of a face and a nearby hand. In this figure, yellow is
the CAMSHIFT search window, and purple is the mean
shift point. The ordinate is the distribution value, and the
abscissa is the horizontal spatial position within the
original image. The window is initialized at size three and
converges to cover the tracked face but not the hand in six
iterations. In this sub-sampled image, the maximum
distribution pixel value is 206 so we set the width of the
search window to be 2*M0/206 (see discussion of window
size in the Implementation Details section below). In this
process, CAMSHIFT exhibits typical behavior: it finds the
center of the nearest connected distribution region (the
face), but ignores nearby distractors (the hand).
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Figure 4: CAMSHIFT in operation down the left then
right columns
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Figure 4 shows CAMSHIFT at startup. Figure 5 below
shows frame to frame tracking. In this figure, the red color
probability distribution has shifted left and changed form.
At the left in Figure 5, the search window starts at its
previous location from the bottom right in Figure 4. In one
iteration it converges to the new face center.
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Figure 5: Example of CAMSHIFT tracking starting from
the converged search location in Figure 4 bottom right

Mean Shift Alone Does Not Work
The mean shift algorithm alone would fail as a tracker. A
window size that works at one distribution scale is not
suitable for another scale as the color object moves
towards and away from the camera. Small fixed-sized
windows may get lost entirely for large object translation
in the scene. Large fixed-sized windows may include
distractors (other people or hands) and too much noise.

CAMSHIFT for Video Sequences
When tracking a colored object, CAMSHIFT operates on
a color probability distribution image derived from color
histograms. CAMSHIFT calculates the centroid of the 2D
color probability distribution within its 2D window of
calculation, re-centers the window, then calculates the
area for the next window size. Thus, we needn’t calculate
the color probability distribution over the whole image,
but can instead restrict the calculation of the distribution
to a smaller image region surrounding the current
CAMSHIFT window. This tends to result in large
computational savings when flesh color does not dominate
the image. We refer to this feedback of calculation region
size as the Coupled CAMSHIFT algorithm.

How to Calculate the Coupled CAMSHIFT Algorithm

1. First, set the calculation region of the probability
distribution to the whole image.

2. Choose the initial location of the 2D mean shift
search window.

3. Calculate the color probability distribution in the 2D
region centered at the search window location in an
area slightly larger than the mean shift window size.

4. Mean shift to convergence or for a set number of
iterations. Store the zeroth moment (area or size) and
mean location.

5. For the next video frame, center the search window at
the mean location stored in Step 4 and set the window

size to a function of the zeroth moment found there.
Go to Step 3.

For each frame, the mean shift algorithm will tend to
converge to the mode of the distribution. Therefore,
CAMSHIFT for video will tend to track the center (mode)
of color objects moving in a video scene. Figure 6 shows
CAMSHIFT locked onto the mode of a flesh color
probability distribution (mode center and area are marked
on the original video image). In this figure, CAMSHIFT
marks the face centroid with a cross and displays its
search window with a box.

Figure 6: A video image and its flesh probability image

Calculation of Head Roll
The 2D orientation of the probability distribution is also
easy to obtain by using the second moments during the
course of CAMSHIFT’s  operation where (x,y) range over
the search window, and I(x,y) is the pixel (probability)
value at (x,y):
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The first two Eigenvalues (major length and width) of the
probability distribution “blob” found by CAMSHIFT may
be calculated in closed form as follows [4]. Let
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When used in face tracking, the above equations give us
head roll, length, and width as marked in Figure 7.

Figure 7: Orientation of the flesh probability distribution
marked on the source video image

CAMSHIFT thus gives us a computationally efficient,
simple to implement algorithm that tracks four degrees of
freedom (see Figure 8).

Video Camera

x

y

z

First 4 tracked degrees of freedom: Head
 movement

Roll

Figure 8: First four head tracked degrees of freedom: X,
Y, Z location, and head roll

How CAMSHIFT Deals with Image Problems
When tracking color objects, CAMSHIFT deals with the
image problems mentioned previously of  irregular object
motion due to perspective, image noise, distractors, and
facial occlusion as described below.

CAMSHIFT continuously re-scales itself in a way that
naturally fits the structure of the data. A colored object’s
potential velocity and acceleration scale with its distance
to the camera, which in turn, scales the size of its color
distribution in the image plane. Thus, when objects are
close, they can move rapidly in the image plane, but their
probability distribution also occupies a large area. In this
situation, CAMSHIFT’s window size is also large and so

can catch large movements. When objects are distant, the
color distribution is small so CAMSHIFT’s window size
is small, but distal objects are slower to traverse the video
scene. This natural adaptation to distribution scale and
translation allows us to do without predictive filters or
variables–a further computational saving–and serves as an
in-built antidote to the problem of erratic object motion.

CAMSHIFT’s windowed distribution gradient climbing
causes it to ignore distribution outliers. Therefore,
CAMSHIFT produces very little jitter in noise and, as a
result, tracking variables do not have to be smoothed or
filtered. This gives us robust noise tolerance.

CAMSHIFT’s robust ability to ignore outliers also allows
it to be robust against distractors. Once CAMSHIFT is
locked onto the mode of a color distribution, it will tend to
ignore other nearby but non-connected color distributions.
Thus, when CAMSHIFT is tracking a face, the presence
of other faces or hand movements in the scene will not
cause CAMSHIFT to loose the original face unless the
other faces or hand movements substantially occlude the
original face.

CAMSHIFT’s provable convergence to the mode of
probability distributions helps it ignore partial occlusions
of the colored object. CAMSHIFT will tend to stick to the
mode of the color distribution that remains.

Moreover, when CAMSHIFT’s window size is set
somewhat greater than the root of the distribution area
under its window, CAMSHIFT tends to grow to
encompass the connected area of the distribution that is
being tracked (see Figure 4). This is just what is desired
for tracking whole objects such as faces, hands, and
colored tools. This property enables CAMSHIFT to not
get stuck tracking, for example, the nose of  a face, but
instead to track the whole face.

Implementation Details

Initial Window Size and Placement
In practice, we work with digital video images so our
distributions are discrete. Since CAMSHIFT is an
algorithm that climbs the gradient of a distribution, the
minimum search window size must be greater than one in
order to detect a gradient. Also, in order to center the
window, it should be of odd size. Thus for discrete
distributions, the minimum window size is set at three. For
this reason too, as CAMSHIFT adapts its search window
size, the size of the search window is rounded up to the
current or next greatest odd number. In practice, at start
up, we calculate the color probability of the whole scene
and use the zeroth moment to set the window size (see
subsection below) and the centroid to set the window
center.
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Setting Adaptive Window Size Function

Deciding what function of the zeroth moment to set the
search window size to in Step 3 of the CAMSHIFT
algorithm depends on an understanding of the distribution
that one wants to track and the goal that one wants to
achieve. The first consideration is to translate the zeroth
moment information into units that make sense for setting
window size. Thus, in Figure 4, the maximum distribution
value per discrete cell is 206, so we divide the zeroth
moment by 206 to convert the calculated area under the
search window to units of number of cells. Our goal is
then to track the whole color object so we need an
expansive window. Thus, we further multiply the result by
two so that the window grows to encompass the connected
distribution area. We then round to the next greatest odd
search window size so that the window has a center.

For 2D color probability distributions where the maximum
pixel value is 255, we set window size s to

.
256

*2 00M
s =

We divide by 256 for the same reason stated above, but to
convert the resulting 2D region to a 1D length, we need to
take the square root. In practice, for tracking faces, we set
window width to s and window length to 1.2s since faces
are somewhat elliptical.

Comments on Software Calibration

Much of CAMSHIFT’s robustness to noise, transient
occlusions, and distractors depends on the search window
matching the size of the object being tracked—it is better
to err on the side of the search window being a little too
small. The search window size depends on the function of
the zeroth moment M00 chosen above. To indirectly
control the search window size, we adjust the color
histogram up or down by a constant, truncating at zero or
saturating at the maximum pixel value. This adjustment
affects the pixel values in the color probability distribution
image which affects M00 and hence window size. For 8-bit
hue, we adjust the histogram down by 20 to 80 (out of a
maximum of 255), which tends to shrink the CAMSHIFT
window to just within the object being tracked and also
reduces image noise.

HSV brightness and saturation thresholds are employed
since hue is not well defined for very low or high
brightness or low saturation. Low and high thresholds are
set off 10% of the maximum pixel value.

Comments on Hardware Calibration

To use CAMSHIFT as a video color object tracker, the
camera’s field of view (zoom) must be set so that it covers
the space that one intends to track in. Turn off automatic

white balance if possible to avoid sudden color shifts. Try
to set (or auto-adjust) AGC, shutter speed, iris or CCD
integration time so that image brightness is neither too
dim nor saturating. The camera need not be in focus to
track colors. CAMSHIFT will work well with cheap
cameras and does not need calibrated lenses.

CAMSHIFT’S Use as a Perceptual Interface

Treatment of CAMSHIFT Tracking Variables
for Use in a Perceptual User Interface
Figure 8 above shows the variables X, Y, Z, and Roll
returned by the CAMSHIFT face tracker. For game and
graphics control, X, Y, Z, and Roll often require a
“neutral” position; that is, a position relative to which
further face movement is measured. For example, if the
captured video image has dimensions (Y, X) of 120x160,
a typical neutral position might be Y=60, X=80. Then if X
< 80, the user has moved 80-X left; if X > 80, the user has
moved X-80 right and so on for each variable.

Piecewise Linear Transformation of Control Variables

To obtain differential control at various positions
including a jitter-damping neutral movement region, each
variable’s relative movement (above or below the neutral
position) is scaled in “N” different ranges.

In the X variable example above, if X is in range #1, X
would be scaled by “X scale 1”; if X is in range #2, X
would be scaled by “X scale 2” and so on.

The formula for mapping captured video head position P
to a screen movement factor F is

F = min(b1,P)s1 + [min(b2-b1, P-b1)]
+s2 + … + [min(b(i+1)-

bi, P-bi)]
+s(i+1)+ … + [P-b(N-1)]

+sN,      (control equation 1)

where [#]+ equals “#” if # > 0, and zero otherwise; min(A,
B) returns the minimum of A or B; b1-bN represents the
bounds of the ranges, s1-sN are the corresponding scale
factors for each range, and P is the absolute value of the
difference of the variable’s location from neutral.

This allows for stability close to the neutral position, with
growing acceleration of movement as the distance away
from neutral increases, in a piecewise linear manner as
shown in Figure 9.
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Figure 9: Piecewise linear transformation of CAMSHIFT
position P interface control variable F

Frame Rate Adjustment

If the graphic’s rendering rate R can be determined, the
final screen movement S is

S = F/R                                            (control equation 2)

Computer graphics and game movement commands S can
be issued on each rendered graphic’s frame. Thus, it is
best for the movement amount S to be sensitive to frame
rate. In computer-rendered graphic or game scenes, simple
views (for example, looking up at blue sky) are rendered
much faster than complex views (for example, texture
mapped city skylines). The final rate of movement should
not depend on the complexity of the 3D view if one wants
to achieve satisfying motion when immersed in a 3D
scene.

Y Variable Special Case for Seated User

If a user sits facing the camera (neutral X,Y) and then
leans left or right (X movement) by pivoting on his/her
chair, Y will decrease as shown in Figure 10 below.

Y

X

13.75

x

A

b

c

Figure 10: Lean changes Y and head roll

In order to overcome this, we use an empirical observation
that the 2nd Eigenvalue (face half width) of the local face
flesh color distribution length is proportional to face size
(see Figure 7), which is, on average, often proportional to
body size. Empirically, the ratio of the 2nd Eigenvector  to
torso length from face centroid is

1 to 13.75  (2 inches to 27.5 inches).(control equation 3)

Given lean distance x (in 2nd Eigenvector units), and
seated size of 13.75, as in Figure 10 so that sin(A) =
x/13.75.  Then,

A = sin-1(x/13.75),                           (control equation 4)

so c = 13.75cos(A), and

b = 13.75( 1 - cos(A))                       (control equation 5)

in units of 2nd Eigenvectors. This is the Y distance to
correct for (add back) when leaning.

Roll Considerations

As can be seen from Figure 10, for seated users lean also
induces a change in head roll by the angle A. Thus, for
control that relies on head roll, this lean-induced roll
should be corrected for. Correction can be accomplished
in two ways:

• Make the first range boundary b1 in control equation
1 large enough to contain the changes in face
orientation that result from leaning. Then use a scale
value s1 = 0 so that leaning causes no roll.

• Subtract the measured roll from the lean-induced roll,
A, calculated in control Equation 4 above.

Another possible problem can result when the user looks
down too much as shown in Figure 11. In this case, the
user is looking down at the keyboard. Looking down too
much causes the forehead to dominate the view which in
turn causes the face flesh color “blob” to look like it is
oriented horizontally.

Figure 11: Extreme down head pitch causes a corrupted
head roll value

To correct for such problems, we define a new variable, Q
called “Roll Quality.” Q is the ratio of the first two
Eigenvalues, length l and width w, of the distribution
color “blob” in the CAMSHIFT search window:

Q = l/w.                                            (control equation 6)

For problem views of the face such as in Figure 11, we
observe that Roll Quality is nearly 1.0. So, for face
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tracking, roll should be ignored (treated as vertical) for
quality measures less than 1.25. Roll should also be
ignored for very high quality scores greater than 2.0 since
such distributions are un-facelike and likely to have
resulted from noise or occlusions.

CAMSHIFT’s Actual Use as an Interface
CAMSHIFT is being used as a face tracker to control
games and 3D graphics. By inserting face control
variables into the mouse queue, we can control
unmodified commercial games such as Quake 2 shown in
Figure 12. We used left and right head movements to slide
a user left and right in the game, back and forth head
movements to move the user backwards and forwards, up
or down movements to let the user shoot (as if ducking or
getting jolted by the gun), and roll left or right to turn the
user left or right in the game. This methodology has been
used extensively in a series of demos with over 30
different users.

Head tracking via CAMSHIFT has also been used to
experiment with immersive 3D graphics control in which
natural head movements are translated to moving the
corresponding 3D graphics camera viewpoint. This has
been extensively tested using a 3D graphics model of the
Forbidden City in China as well as in exploring a 3D
graphics model of the big island of Hawaii as shown in
Figure 13. Most users find it an enjoyable experience in
which they naturally pick up how to control the graphics
viewpoint movement.

Figure 12: CAMSHIFT-based face tracker used to play
Quake 2 hands free by inserting control variables into the

mouse queue

Figure 13: CAMSHIFT-based face tracker used to “fly”
over a 3D graphic’s model of Hawaii

CAMSHIFT Analysis

Comparison to Polhemus
In order to assess the tracking accuracy of CAMSHIFT,
we compared its accuracy against a Polhemus tracker.
Polhemus is a magnetic sensor connected to a system that
measures six degrees of spatial freedom and thus can be
used for object tracking when tethered to an object. The
observed accuracy of Polhemus is +/- 1.5cm in spatial
location and about 2.5o in orientation within 30 inches of
the Polhemus antenna. We compared Polhemus tracking
to CAMSHIFT color object tracking using a 320x240
image size (see Figure 14a-d). The coordinate systems of
Polhemus and the camera were carefully aligned prior to
testing. The object tracked was pulled on a cart in a set
trajectory away from the Polhemus origin. The
comparison between CAMSHIFT and Polhemus in each
of X, Y, Z, and Roll yielded the results shown Table 1.

Tracking
Variable

X Y Z Roll

Standard
Deviation
of
Difference

0.27cm 0.58cm 3.4cm 2.4o

Table 1: Standard deviation of Polhemus vs. CAMSHIFT
tracking differences

Z exhibited the worst difference because CAMSHIFT
determines Z by measuring color area, which is inherently
noisy. X, Y, and Roll are well within Polhemus’s observed
tracking error and therefore indistinguishable. Z is about
2cm off. Except for Z, these results are as good or better
than much more elaborate vision tracking systems [17],
although CAMSHIFT does not yet track pitch and yaw.
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Figure 14a: Comparision  of X tracking accuracy
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Figure 14b: Comparision of Y tracking accuracy
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Figure 14c: Comparision of Z tracking accuracy
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Figure 14d: Accuracy comparison of Polhemus and
CAMSHIFT tracking for roll.

Tracking in Noise
CAMSHIFT’s robust ability to find and track the mode of
a dynamically changing probability distribution also gives
it good tracking behavior in noise. We videotaped a head
movement sequence and then played it back adding 0, 10,
30, and 50% uniform noise. Figure 15 shows 50% noise
added to the raw image on the left, and the resulting color
probability distribution on the right. Note that the use of a
color model greatly cuts down the random noise since
color noise has a low probability of being flesh color.
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Nevertheless, the flesh color model is highly degraded and
there are many spurious flesh pixels in the color
probability distribution image. But CAMSHIFT is still
able to track X, Y, and Roll quite well in up to 30% white
noise as shown in Figure 16a-d. Z is more of a problem
because CAMSHIFT measures Z by tracking distribution
area under its search window, and one can see in Figure
15 that area is highly effected by noise. Y shows an
upward shift simply because the narrower chin region
exhibits more degradation in noise than the wider
forehead. Roll tracks well until noise is such that the
length and width of the face color distribution are
obscured. Thus, CAMSHIFT handles noise well without
the need for extra filtering or adaptive smoothing.

Figure 15: Tracking in 50% uniform noise
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Figure 16a: X accuracy in 0-50% uniform noise
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Figure 16b: Y accuracy in 0-50% uniform noise
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Tracking in the Presence of Distractions
CAMSHIFT’s search window converges to span the
nearest dominant connected probability distribution. If we
adjust the nature of the probability distribution by
properly setting the HSV brightness and saturation
threshold (see Implementation Details section above), the
search window will tend to stay just within the object
being tracked as shown in the marked image at top left in
Figure 17. In such cases, CAMSHIFT is robust against
distracting (nearby) distributions and transient occlusions.
This robustness occurs for distractors because the search
window rarely contains the distractor as shown
sequentially down the left, then right, columns of Figure
17.

Figure 17: Tracking a face with background distractor
faces (sequence: down left then right columns)

Table 2 shows the results collected from 44 sample point
on five tracking runs with active background face
distraction such as that shown in Figure 17. Since the
distracting face rarely intersects much of CAMSHIFT’s
search window, the X, Y, and Z tracking variables are
perturbed very little. Roll is more strongly affected since
even a small intersection of a distractor in CAMSHIFT’s
search window can change the effective orientation of the
flesh pixels as measured by CAMSHIFT.

Tracked
Variable

Average  Std.
Deviation

Maximum Std.
Deviation

X (pixels) 0.42 2.00

Y(pixels) 0.53 1.79

Z(pixels) 0.54 1.50

Roll (degrees) 5.18 46.80

Table 2: Perturbation of CAMSHIFT tracking variables
by face distractors

CAMSHIFT tends to be robust against transient occlusion
because the search window will tend to first absorb the
occlusion and then stick with the dominant distribution
mode when the occlusion passes. Figure 18 demonstrates
robustness to hand occlusion in sequential steps down the
left, then right columns.

Figure 18: Tracking a face in the presence of passing
hand occlusions (sequence: down left then right columns)

Table 3 shows the results collected from 43 sample points
on five tracking runs with active transient hand occlusion
of the face. Average perturbation is less than three pixels
for X, Y, and Z. Roll is more strongly effected due to the
arbitrary orientation of the hand as it passes through the
search window.
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Tracked
Variable

Average Std.
Deviation

Maximum Std.
Deviation

X (pixels) 2.35 7.17

Y(pixels) 2.81 6.29

Z(pixels) 2.10 4.65

Roll (degrees) 14.64 34.40

Table 3: Perturbation of CAMSHIFT tracking variables
by passing hand occlusion

We see from the above table that CAMSHIFT gives us
wide tolerance for distraction and occlusion “for free” due
to the statistically robust workings of the algorithm.

Performance
The order of complexity of CAMSHIFT is Ο(αN2) where
α is some constant, and the image is taken to be NxN. α is
most influenced by the moment calculations and the
average number of mean shift iterations until convergence.
The biggest computational savings come through scaling
the region of calculation to an area around the search
window size as previously discussed.

CAMSHIFT was run on a 300 MHz Pentium® II
processor, using an image size of 160x120 at 30 frames
per second (see Figure 19). CAMSHIFT’s performance
scales with tracked object size. Figure 19 shows the CPU
load from the entire computer vision thread including
image acquisition, conversion to color probability
distribution, and CAMSHIFT tracking. In Figure 19 when
the tracked face is far from the camera, the CAMSHIFT
thread consumes only 10% of the CPU cycles. When the
face fills the frame, CAMSHIFT consumes 55% of the
CPU.

Figure 19: Performance scales inversely with tracked
object size (ordinate is percent of CPU used)

Figure 20 traces computer vision thread’s performance in
an actual control task of “flying” over a 3D model of
Hawaii using head movements. In this case, the average
CPU usage was 29%. VTUNETM analysis showed that the
actual CAMSHIFT operation (excluding image capture,
color conversion or image copying) consumed under 12%
of the CPU. CAMSHIFT relies on Intel’s MMX™
technology optimized Image Processing Library available
on the Web [3] to do RGB-to-HSV image conversion and
image allocation. MMX technology optimized image
moments calculation has recently been added to the Image
Processing Library, but not in time for publication. The
use of such optimized moment calculations will boost
performance noticeably since this forms part of the inner
mean shift calculation loop. Even without this
improvement, CAMSHIFT’s current average actual use
efficiency of 29% allows it to be used as a visual user
interface.
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Figure 20: In actual use, CAMSHIFT consumed an
average of 29% of one 300 MHz Pentium® II CPU when

used to control a 3D graphic’s Hawaii fly through

Discussion
This paper discussed a core tracking module that is part of
a larger effort to allow computers to track and understand
human motion, pose, and tool use. As such, the module
was designed to be simple and computationally efficient.
Yet, this core module must still handle the basic
computer-vision problems outlined in this paper. We’ve
seen that CAMSHIFT handles these problems as follows:
• Irregular object motion : CAMSHIFT scales its

search window to object size thus naturally handling
perspective-induced motion irregularities.

• Image noise: The color model eliminates much of the
noise, and CAMSHIFT tends to ignore the remaining
outliers.

• Distractors: CAMSHIFT ignores objects outside its
search window so objects such as nearby faces and
hands do not affect CAMSHIFT’s tracking.

• Occlusion: As long as occlusion isn’t 100%,
CAMSHIFT will still tend to follow what is left of the
objects’ probability distribution.

• Lighting variation:  Using only hue from the HSV
color space and ignoring pixels with high or low
brightness gives CAMSHIFT wide lighting tolerance.

CAMSHIFT’s simplicity does cause limitations however.
Since CAMSHIFT derives Z from object area estimates, Z
is subject to noise and spurious values. The effects of
noise are evident in Figure 16c. That CAMSHIFT can get
spurious area values is evident in Figure 11.

Since CAMSHIFT relies on color distributions alone,
errors in color (colored lighting, dim illumination, too
much illumination) will cause errors in tracking. More
sophisticated trackers use multiple modes such as feature
tracking and motion analysis to compensate for this, but

more complexity would undermine the original design
criterion for CAMSHIFT.

CAMSHIFT also only detects four (X, Y, Z, and Roll) of
the six modes of freedom (above plus pitch and yaw).
Unfortunately, of the six degrees of head movement
possible, Roll is the least useful control variable since it is
the least “natural” head movement and is therefore
fatiguing for the user to use constantly.

Conclusion
CAMSHIFT is a simple, computationally efficient face
and colored object tracker. While acknowledging the
limitation imposed by its simplicity, we can still see that
CAMSHIFT tracks virtually as well as more expensive
tethered trackers (Polhemus) or much more sophisticated,
computationally expensive vision systems [17], and it
tracks well in noisy environments. Thus, as we have
shown, even though CAMSHIFT was conceived as a
simple part of a larger tracking system, it has many uses
right now in game and 3D graphics’ control.

Adding perceptual interfaces can make computers more
natural to use, more fun for games and graphics, and a
better medium of communication. These new features
consume more MIPs and so will take advantage of more
MIPs available with future Intel® CPUs.

In this project, we designed a highly efficient face tracking
algorithm rather than a more complex, higher MIPs usage
algorithm. This was done because we want to be able to
demonstrate compelling applications and interfaces on
today’s systems in order to prepare the way for the future
use of computer vision on PCs. CAMSHIFT is usable as a
visual interface now, yet designed to be part of a more
robust, larger tracking system in the future. CAMSHIFT
will be incorporated into larger, more complex, higher
MIPs-demanding modules that provide more robust
tracking, posture understanding, gesture and face
recognition, and object understanding. In this way, the
functionality of the computer vision interface will increase
with increasing Intel CPU speeds. A user will thus be able
to upgrade their computer vision interface by upgrading to
higher speed Intel CPUs in the future.
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