%YAML 1.0 --- ################################################################################ # Object detection models. ################################################################################ # YOLOv8 object detection family from ultralytics (https://github.com/ultralytics/ultralytics) # Might be used for all YOLOv8n YOLOv8s YOLOv8m YOLOv8l and YOLOv8x yolov8x: load_info: url: "https://huggingface.co/cabelo/yolov8/resolve/main/yolov8x.onnx?download=true" sha1: "462f15d668c046d38e27d3df01fe8142dd004cb4" model: "yolov8x.onnx" mean: 0.0 scale: 0.00392 width: 640 height: 640 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "yolo_detector" yolov8s: load_info: url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8s.onnx" sha1: "82cd83984396fe929909ecb58212b0e86d0904b1" model: "yolov8s.onnx" mean: 0.0 scale: 0.00392 width: 640 height: 640 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "yolo_detector" yolov8n: load_info: url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8n.onnx" sha1: "68f864475d06e2ec4037181052739f268eeac38d" model: "yolov8n.onnx" mean: 0.0 scale: 0.00392 width: 640 height: 640 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "yolo_detector" yolov8m: load_info: url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8m.onnx" sha1: "656ffeb4f3b067bc30df956728b5f9c61a4cb090" model: "yolov8m.onnx" mean: 0.0 scale: 0.00392 width: 640 height: 640 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "yolo_detector" yolov8l: load_info: url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8l.onnx" sha1: "462df53ca3a85d110bf6be7fc2e2bb1277124395" model: "yolov8l.onnx" mean: 0.0 scale: 0.00392 width: 640 height: 640 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "yolo_detector" # YOLO4 object detection family from Darknet (https://github.com/AlexeyAB/darknet) # YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/) # Might be used for all YOLOv2, TinyYolov2, YOLOv3, YOLOv4 and TinyYolov4 yolov4: load_info: url: "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights" sha1: "0143deb6c46fcc7f74dd35bf3c14edc3784e99ee" model: "yolov4.weights" config: "yolov4.cfg" mean: [0, 0, 0] scale: 0.00392 width: 416 height: 416 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "object_detection" yolov4-tiny: load_info: url: "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights" sha1: "451caaab22fb9831aa1a5ee9b5ba74a35ffa5dcb" model: "yolov4-tiny.weights" config: "yolov4-tiny.cfg" mean: [0, 0, 0] scale: 0.00392 width: 416 height: 416 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "object_detection" yolov3: load_info: url: "https://pjreddie.com/media/files/yolov3.weights" sha1: "520878f12e97cf820529daea502acca380f1cb8e" model: "yolov3.weights" config: "yolov3.cfg" mean: [0, 0, 0] scale: 0.00392 width: 416 height: 416 rgb: true classes: "object_detection_classes_yolo.txt" background_label_id: 0 sample: "object_detection" tiny-yolo-voc: load_info: url: "https://pjreddie.com/media/files/yolov2-tiny-voc.weights" sha1: "24b4bd049fc4fa5f5e95f684a8967e65c625dff9" model: "tiny-yolo-voc.weights" config: "tiny-yolo-voc.cfg" mean: [0, 0, 0] scale: 0.00392 width: 416 height: 416 rgb: true classes: "object_detection_classes_pascal_voc.txt" background_label_id: 0 sample: "object_detection" yolov8: load_info: url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8n.onnx" sha1: "68f864475d06e2ec4037181052739f268eeac38d" model: "yolov8n.onnx" mean: [0, 0, 0] scale: 0.00392 width: 640 height: 640 rgb: true postprocessing: "yolov8" classes: "object_detection_classes_yolo.txt" sample: "object_detection" # Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD ssd_caffe: load_info: url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc" sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a" model: "MobileNetSSD_deploy.caffemodel" config: "MobileNetSSD_deploy.prototxt" mean: [127.5, 127.5, 127.5] scale: 0.007843 width: 300 height: 300 rgb: false classes: "object_detection_classes_pascal_voc.txt" sample: "object_detection" # TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection ssd_tf: load_info: url: "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz" sha1: "9e4bcdd98f4c6572747679e4ce570de4f03a70e2" download_sha: "6157ddb6da55db2da89dd561eceb7f944928e317" download_name: "ssd_mobilenet_v1_coco_2017_11_17.tar.gz" member: "ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb" model: "ssd_mobilenet_v1_coco_2017_11_17.pb" config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt" mean: [0, 0, 0] scale: 1.0 width: 300 height: 300 rgb: true classes: "object_detection_classes_coco.txt" sample: "object_detection" # TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection faster_rcnn_tf: load_info: url: "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz" sha1: "f2e4bf386b9bb3e25ddfcbbd382c20f417e444f3" download_sha: "c710f25e5c6a3ce85fe793d5bf266d581ab1c230" download_name: "faster_rcnn_inception_v2_coco_2018_01_28.tar.gz" member: "faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb" model: "faster_rcnn_inception_v2_coco_2018_01_28.pb" config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt" mean: [0, 0, 0] scale: 1.0 width: 800 height: 600 rgb: true sample: "object_detection" ################################################################################ # Image classification models. ################################################################################ squeezenet: load_info: url: "https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.1-7.onnx?download=" sha1: "ec31942d17715941bb9b81f3a91dc59def9236be" model: "squeezenet1.1-7.onnx" mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] scale: 0.003921 width: 224 height: 224 rgb: true labels: "classification_classes_ILSVRC2012.txt" sample: "classification" googlenet: load_info: url: "https://github.com/onnx/models/raw/69c5d3751dda5349fd3fc53f525395d180420c07/vision/classification/inception_and_googlenet/googlenet/model/googlenet-8.onnx" sha1: "da39a3ee5e6b4b0d3255bfef95601890afd80709" model: "googlenet-8.onnx" mean: [103.939, 116.779, 123.675] std: [1, 1, 1] scale: 1.0 width: 224 height: 224 rgb: false labels: "classification_classes_ILSVRC2012.txt" sample: "classification" resnet: load_info: url: "https://github.com/onnx/models/raw/main/validated/vision/classification/resnet/model/resnet50-v2-7.onnx" sha1: "c3a67b3cb2f0a61a7eb75eb8bd9139c89557cbe0" model: "resnet50-v2-7.onnx" mean: [123.675, 116.28, 103.53] std: [58.395, 57.12, 57.375] scale: 1.0 width: 224 height: 224 rgb: true labels: "classification_classes_ILSVRC2012.txt" sample: "classification" ################################################################################ # Semantic segmentation models. ################################################################################ fcnresnet50: load_info: url: "https://github.com/onnx/models/raw/491ce05590abb7551d7fae43c067c060eeb575a6/validated/vision/object_detection_segmentation/fcn/model/fcn-resnet50-12.onnx" sha1: "1bb0c7e0034038969aecc6251166f1612a139230" model: "fcn-resnet50-12.onnx" mean: [103.5, 116.2, 123.6] scale: 0.019 width: 500 height: 500 rgb: false sample: "segmentation" fcnresnet101: load_info: url: "https://github.com/onnx/models/raw/fb8271d5d5d9b90dbb1eb5e8e40f8f580fb248b3/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx" sha1: "e7e76474bf6b73334ab32c4be1374c9e605f5aed" model: "fcn-resnet101-11.onnx" mean: [103.5, 116.2, 123.6] scale: 0.019 width: 500 height: 500 rgb: false sample: "segmentation" u2netp: load_info: url: "https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx" sha1: "0a99236f0d5c1916a99a8c401b23e5ef32038606" model: "u2netp.onnx" mean: [123.6, 116.2, 103.5] scale: 0.019 width: 320 height: 320 rgb: true sample: "segmentation"