#include "opencv2/core.hpp" #include "cascadeclassifier.h" #include using namespace std; using namespace cv; static const char* stageTypes[] = { CC_BOOST }; static const char* featureTypes[] = { CC_HAAR, CC_LBP, CC_HOG }; CvCascadeParams::CvCascadeParams() : stageType( defaultStageType ), featureType( defaultFeatureType ), winSize( cvSize(24, 24) ) { name = CC_CASCADE_PARAMS; } CvCascadeParams::CvCascadeParams( int _stageType, int _featureType ) : stageType( _stageType ), featureType( _featureType ), winSize( cvSize(24, 24) ) { name = CC_CASCADE_PARAMS; } //---------------------------- CascadeParams -------------------------------------- void CvCascadeParams::write( FileStorage &fs ) const { string stageTypeStr = stageType == BOOST ? CC_BOOST : string(); CV_Assert( !stageTypeStr.empty() ); fs << CC_STAGE_TYPE << stageTypeStr; string featureTypeStr = featureType == CvFeatureParams::HAAR ? CC_HAAR : featureType == CvFeatureParams::LBP ? CC_LBP : featureType == CvFeatureParams::HOG ? CC_HOG : 0; CV_Assert( !stageTypeStr.empty() ); fs << CC_FEATURE_TYPE << featureTypeStr; fs << CC_HEIGHT << winSize.height; fs << CC_WIDTH << winSize.width; } bool CvCascadeParams::read( const FileNode &node ) { if ( node.empty() ) return false; string stageTypeStr, featureTypeStr; FileNode rnode = node[CC_STAGE_TYPE]; if ( !rnode.isString() ) return false; rnode >> stageTypeStr; stageType = !stageTypeStr.compare( CC_BOOST ) ? BOOST : -1; if (stageType == -1) return false; rnode = node[CC_FEATURE_TYPE]; if ( !rnode.isString() ) return false; rnode >> featureTypeStr; featureType = !featureTypeStr.compare( CC_HAAR ) ? CvFeatureParams::HAAR : !featureTypeStr.compare( CC_LBP ) ? CvFeatureParams::LBP : !featureTypeStr.compare( CC_HOG ) ? CvFeatureParams::HOG : -1; if (featureType == -1) return false; node[CC_HEIGHT] >> winSize.height; node[CC_WIDTH] >> winSize.width; return winSize.height > 0 && winSize.width > 0; } void CvCascadeParams::printDefaults() const { CvParams::printDefaults(); cout << " [-stageType <"; for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ ) { cout << (i ? " | " : "") << stageTypes[i]; if ( i == defaultStageType ) cout << "(default)"; } cout << ">]" << endl; cout << " [-featureType <{"; for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ ) { cout << (i ? ", " : "") << featureTypes[i]; if ( i == defaultStageType ) cout << "(default)"; } cout << "}>]" << endl; cout << " [-w ]" << endl; cout << " [-h ]" << endl; } void CvCascadeParams::printAttrs() const { cout << "stageType: " << stageTypes[stageType] << endl; cout << "featureType: " << featureTypes[featureType] << endl; cout << "sampleWidth: " << winSize.width << endl; cout << "sampleHeight: " << winSize.height << endl; } bool CvCascadeParams::scanAttr( const string prmName, const string val ) { bool res = true; if( !prmName.compare( "-stageType" ) ) { for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ ) if( !val.compare( stageTypes[i] ) ) stageType = i; } else if( !prmName.compare( "-featureType" ) ) { for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ ) if( !val.compare( featureTypes[i] ) ) featureType = i; } else if( !prmName.compare( "-w" ) ) { winSize.width = atoi( val.c_str() ); } else if( !prmName.compare( "-h" ) ) { winSize.height = atoi( val.c_str() ); } else res = false; return res; } //---------------------------- CascadeClassifier -------------------------------------- bool CvCascadeClassifier::train( const string _cascadeDirName, const string _posFilename, const string _negFilename, int _numPos, int _numNeg, int _precalcValBufSize, int _precalcIdxBufSize, int _numStages, const CvCascadeParams& _cascadeParams, const CvFeatureParams& _featureParams, const CvCascadeBoostParams& _stageParams, bool baseFormatSave, double acceptanceRatioBreakValue ) { // Start recording clock ticks for training time output const clock_t begin_time = clock(); if( _cascadeDirName.empty() || _posFilename.empty() || _negFilename.empty() ) CV_Error( CV_StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" ); string dirName; if (_cascadeDirName.find_last_of("/\\") == (_cascadeDirName.length() - 1) ) dirName = _cascadeDirName; else dirName = _cascadeDirName + '/'; numPos = _numPos; numNeg = _numNeg; numStages = _numStages; if ( !imgReader.create( _posFilename, _negFilename, _cascadeParams.winSize ) ) { cout << "Image reader can not be created from -vec " << _posFilename << " and -bg " << _negFilename << "." << endl; return false; } if ( !load( dirName ) ) { cascadeParams = _cascadeParams; featureParams = CvFeatureParams::create(cascadeParams.featureType); featureParams->init(_featureParams); stageParams = makePtr(); *stageParams = _stageParams; featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType); featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize ); stageClassifiers.reserve( numStages ); }else{ // Make sure that if model parameters are preloaded, that people are aware of this, // even when passing other parameters to the training command cout << "---------------------------------------------------------------------------------" << endl; cout << "Training parameters are pre-loaded from the parameter file in data folder!" << endl; cout << "Please empty this folder if you want to use a NEW set of training parameters." << endl; cout << "---------------------------------------------------------------------------------" << endl; } cout << "PARAMETERS:" << endl; cout << "cascadeDirName: " << _cascadeDirName << endl; cout << "vecFileName: " << _posFilename << endl; cout << "bgFileName: " << _negFilename << endl; cout << "numPos: " << _numPos << endl; cout << "numNeg: " << _numNeg << endl; cout << "numStages: " << numStages << endl; cout << "precalcValBufSize[Mb] : " << _precalcValBufSize << endl; cout << "precalcIdxBufSize[Mb] : " << _precalcIdxBufSize << endl; cout << "acceptanceRatioBreakValue : " << acceptanceRatioBreakValue << endl; cascadeParams.printAttrs(); stageParams->printAttrs(); featureParams->printAttrs(); cout << "Number of unique features given windowSize [" << _cascadeParams.winSize.width << "," << _cascadeParams.winSize.height << "] : " << featureEvaluator->getNumFeatures() << "" << endl; int startNumStages = (int)stageClassifiers.size(); if ( startNumStages > 1 ) cout << endl << "Stages 0-" << startNumStages-1 << " are loaded" << endl; else if ( startNumStages == 1) cout << endl << "Stage 0 is loaded" << endl; double requiredLeafFARate = pow( (double) stageParams->maxFalseAlarm, (double) numStages ) / (double)stageParams->max_depth; double tempLeafFARate; for( int i = startNumStages; i < numStages; i++ ) { cout << endl << "===== TRAINING " << i << "-stage =====" << endl; cout << "= 0) ){ cout << "The required acceptanceRatio for the model has been reached to avoid overfitting of trainingdata. " "Branch training terminated." << endl; break; } Ptr tempStage = makePtr(); bool isStageTrained = tempStage->train( featureEvaluator, curNumSamples, _precalcValBufSize, _precalcIdxBufSize, *stageParams ); cout << "END>" << endl; if(!isStageTrained) break; stageClassifiers.push_back( tempStage ); // save params if( i == 0) { std::string paramsFilename = dirName + CC_PARAMS_FILENAME; FileStorage fs( paramsFilename, FileStorage::WRITE); if ( !fs.isOpened() ) { cout << "Parameters can not be written, because file " << paramsFilename << " can not be opened." << endl; return false; } fs << FileStorage::getDefaultObjectName(paramsFilename) << "{"; writeParams( fs ); fs << "}"; } // save current stage char buf[10]; sprintf(buf, "%s%d", "stage", i ); string stageFilename = dirName + buf + ".xml"; FileStorage fs( stageFilename, FileStorage::WRITE ); if ( !fs.isOpened() ) { cout << "Current stage can not be written, because file " << stageFilename << " can not be opened." << endl; return false; } fs << FileStorage::getDefaultObjectName(stageFilename) << "{"; tempStage->write( fs, Mat() ); fs << "}"; // Output training time up till now float seconds = float( clock () - begin_time ) / CLOCKS_PER_SEC; int days = int(seconds) / 60 / 60 / 24; int hours = (int(seconds) / 60 / 60) % 24; int minutes = (int(seconds) / 60) % 60; int seconds_left = int(seconds) % 60; cout << "Training until now has taken " << days << " days " << hours << " hours " << minutes << " minutes " << seconds_left <<" seconds." << endl; } if(stageClassifiers.size() == 0) { cout << "Cascade classifier can't be trained. Check the used training parameters." << endl; return false; } save( dirName + CC_CASCADE_FILENAME, baseFormatSave ); return true; } int CvCascadeClassifier::predict( int sampleIdx ) { CV_DbgAssert( sampleIdx < numPos + numNeg ); for (vector< Ptr >::iterator it = stageClassifiers.begin(); it != stageClassifiers.end();++it ) { if ( (*it)->predict( sampleIdx ) == 0.f ) return 0; } return 1; } bool CvCascadeClassifier::updateTrainingSet( double minimumAcceptanceRatio, double& acceptanceRatio) { int64 posConsumed = 0, negConsumed = 0; imgReader.restart(); int posCount = fillPassedSamples( 0, numPos, true, 0, posConsumed ); if( !posCount ) return false; cout << "POS count : consumed " << posCount << " : " << (int)posConsumed << endl; int proNumNeg = cvRound( ( ((double)numNeg) * ((double)posCount) ) / numPos ); // apply only a fraction of negative samples. double is required since overflow is possible int negCount = fillPassedSamples( posCount, proNumNeg, false, minimumAcceptanceRatio, negConsumed ); if ( !negCount ) if ( !(negConsumed > 0 && ((double)negCount+1)/(double)negConsumed <= minimumAcceptanceRatio) ) return false; curNumSamples = posCount + negCount; acceptanceRatio = negConsumed == 0 ? 0 : ( (double)negCount/(double)(int64)negConsumed ); cout << "NEG count : acceptanceRatio " << negCount << " : " << acceptanceRatio << endl; return true; } int CvCascadeClassifier::fillPassedSamples( int first, int count, bool isPositive, double minimumAcceptanceRatio, int64& consumed ) { int getcount = 0; Mat img(cascadeParams.winSize, CV_8UC1); for( int i = first; i < first + count; i++ ) { for( ; ; ) { if( consumed != 0 && ((double)getcount+1)/(double)(int64)consumed <= minimumAcceptanceRatio ) return getcount; bool isGetImg = isPositive ? imgReader.getPos( img ) : imgReader.getNeg( img ); if( !isGetImg ) return getcount; consumed++; featureEvaluator->setImage( img, isPositive ? 1 : 0, i ); if( predict( i ) == 1 ) { getcount++; printf("%s current samples: %d\r", isPositive ? "POS":"NEG", getcount); break; } } } return getcount; } void CvCascadeClassifier::writeParams( FileStorage &fs ) const { cascadeParams.write( fs ); fs << CC_STAGE_PARAMS << "{"; stageParams->write( fs ); fs << "}"; fs << CC_FEATURE_PARAMS << "{"; featureParams->write( fs ); fs << "}"; } void CvCascadeClassifier::writeFeatures( FileStorage &fs, const Mat& featureMap ) const { featureEvaluator->writeFeatures( fs, featureMap ); } void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap ) const { char cmnt[30]; int i = 0; fs << CC_STAGES << "["; for( vector< Ptr >::const_iterator it = stageClassifiers.begin(); it != stageClassifiers.end();++it, ++i ) { sprintf( cmnt, "stage %d", i ); cvWriteComment( fs.fs, cmnt, 0 ); fs << "{"; (*it)->write( fs, featureMap ); fs << "}"; } fs << "]"; } bool CvCascadeClassifier::readParams( const FileNode &node ) { if ( !node.isMap() || !cascadeParams.read( node ) ) return false; stageParams = makePtr(); FileNode rnode = node[CC_STAGE_PARAMS]; if ( !stageParams->read( rnode ) ) return false; featureParams = CvFeatureParams::create(cascadeParams.featureType); rnode = node[CC_FEATURE_PARAMS]; if ( !featureParams->read( rnode ) ) return false; return true; } bool CvCascadeClassifier::readStages( const FileNode &node) { FileNode rnode = node[CC_STAGES]; if (!rnode.empty() || !rnode.isSeq()) return false; stageClassifiers.reserve(numStages); FileNodeIterator it = rnode.begin(); for( int i = 0; i < min( (int)rnode.size(), numStages ); i++, it++ ) { Ptr tempStage = makePtr(); if ( !tempStage->read( *it, featureEvaluator, *stageParams) ) return false; stageClassifiers.push_back(tempStage); } return true; } // For old Haar Classifier file saving #define ICV_HAAR_SIZE_NAME "size" #define ICV_HAAR_STAGES_NAME "stages" #define ICV_HAAR_TREES_NAME "trees" #define ICV_HAAR_FEATURE_NAME "feature" #define ICV_HAAR_RECTS_NAME "rects" #define ICV_HAAR_TILTED_NAME "tilted" #define ICV_HAAR_THRESHOLD_NAME "threshold" #define ICV_HAAR_LEFT_NODE_NAME "left_node" #define ICV_HAAR_LEFT_VAL_NAME "left_val" #define ICV_HAAR_RIGHT_NODE_NAME "right_node" #define ICV_HAAR_RIGHT_VAL_NAME "right_val" #define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" #define ICV_HAAR_PARENT_NAME "parent" #define ICV_HAAR_NEXT_NAME "next" void CvCascadeClassifier::save( const string filename, bool baseFormat ) { FileStorage fs( filename, FileStorage::WRITE ); if ( !fs.isOpened() ) return; fs << FileStorage::getDefaultObjectName(filename) << "{"; if ( !baseFormat ) { Mat featureMap; getUsedFeaturesIdxMap( featureMap ); writeParams( fs ); fs << CC_STAGE_NUM << (int)stageClassifiers.size(); writeStages( fs, featureMap ); writeFeatures( fs, featureMap ); } else { //char buf[256]; CvSeq* weak; if ( cascadeParams.featureType != CvFeatureParams::HAAR ) CV_Error( CV_StsBadFunc, "old file format is used for Haar-like features only"); fs << ICV_HAAR_SIZE_NAME << "[:" << cascadeParams.winSize.width << cascadeParams.winSize.height << "]"; fs << ICV_HAAR_STAGES_NAME << "["; for( size_t si = 0; si < stageClassifiers.size(); si++ ) { fs << "{"; //stage /*sprintf( buf, "stage %d", si ); CV_CALL( cvWriteComment( fs, buf, 1 ) );*/ weak = stageClassifiers[si]->get_weak_predictors(); fs << ICV_HAAR_TREES_NAME << "["; for( int wi = 0; wi < weak->total; wi++ ) { int inner_node_idx = -1, total_inner_node_idx = -1; queue inner_nodes_queue; CvCascadeBoostTree* tree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi )); fs << "["; /*sprintf( buf, "tree %d", wi ); CV_CALL( cvWriteComment( fs, buf, 1 ) );*/ const CvDTreeNode* tempNode; inner_nodes_queue.push( tree->get_root() ); total_inner_node_idx++; while (!inner_nodes_queue.empty()) { tempNode = inner_nodes_queue.front(); inner_node_idx++; fs << "{"; fs << ICV_HAAR_FEATURE_NAME << "{"; ((CvHaarEvaluator*)featureEvaluator.get())->writeFeature( fs, tempNode->split->var_idx ); fs << "}"; fs << ICV_HAAR_THRESHOLD_NAME << tempNode->split->ord.c; if( tempNode->left->left || tempNode->left->right ) { inner_nodes_queue.push( tempNode->left ); total_inner_node_idx++; fs << ICV_HAAR_LEFT_NODE_NAME << total_inner_node_idx; } else fs << ICV_HAAR_LEFT_VAL_NAME << tempNode->left->value; if( tempNode->right->left || tempNode->right->right ) { inner_nodes_queue.push( tempNode->right ); total_inner_node_idx++; fs << ICV_HAAR_RIGHT_NODE_NAME << total_inner_node_idx; } else fs << ICV_HAAR_RIGHT_VAL_NAME << tempNode->right->value; fs << "}"; // ICV_HAAR_FEATURE_NAME inner_nodes_queue.pop(); } fs << "]"; } fs << "]"; //ICV_HAAR_TREES_NAME fs << ICV_HAAR_STAGE_THRESHOLD_NAME << stageClassifiers[si]->getThreshold(); fs << ICV_HAAR_PARENT_NAME << (int)si-1 << ICV_HAAR_NEXT_NAME << -1; fs << "}"; //stage } /* for each stage */ fs << "]"; //ICV_HAAR_STAGES_NAME } fs << "}"; } bool CvCascadeClassifier::load( const string cascadeDirName ) { FileStorage fs( cascadeDirName + CC_PARAMS_FILENAME, FileStorage::READ ); if ( !fs.isOpened() ) return false; FileNode node = fs.getFirstTopLevelNode(); if ( !readParams( node ) ) return false; featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType); featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize ); fs.release(); char buf[10]; for ( int si = 0; si < numStages; si++ ) { sprintf( buf, "%s%d", "stage", si); fs.open( cascadeDirName + buf + ".xml", FileStorage::READ ); node = fs.getFirstTopLevelNode(); if ( !fs.isOpened() ) break; Ptr tempStage = makePtr(); if ( !tempStage->read( node, featureEvaluator, *stageParams )) { fs.release(); break; } stageClassifiers.push_back(tempStage); } return true; } void CvCascadeClassifier::getUsedFeaturesIdxMap( Mat& featureMap ) { int varCount = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize(); featureMap.create( 1, varCount, CV_32SC1 ); featureMap.setTo(Scalar(-1)); for( vector< Ptr >::const_iterator it = stageClassifiers.begin(); it != stageClassifiers.end();++it ) (*it)->markUsedFeaturesInMap( featureMap ); for( int fi = 0, idx = 0; fi < varCount; fi++ ) if ( featureMap.at(0, fi) >= 0 ) featureMap.ptr(0)[fi] = idx++; }