/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined(HAVE_CUDA) void cv::gpu::transformPoints(const GpuMat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::solvePnPRansac(const Mat&, const Mat&, const Mat&, const Mat&, Mat&, Mat&, bool, int, float, int, vector*) { throw_nogpu(); } #else namespace cv { namespace gpu { namespace device { namespace transform_points { void call(const DevMem2D_ src, const float* rot, const float* transl, DevMem2D_ dst, cudaStream_t stream); } namespace project_points { void call(const DevMem2D_ src, const float* rot, const float* transl, const float* proj, DevMem2D_ dst, cudaStream_t stream); } namespace solve_pnp_ransac { int maxNumIters(); void computeHypothesisScores( const int num_hypotheses, const int num_points, const float* rot_matrices, const float3* transl_vectors, const float3* object, const float2* image, const float dist_threshold, int* hypothesis_scores); } }}} using namespace ::cv::gpu::device; namespace { void transformPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, cudaStream_t stream) { CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); // Convert rotation vector into matrix Mat rot; Rodrigues(rvec, rot); dst.create(src.size(), src.type()); transform_points::call(src, rot.ptr(), tvec.ptr(), dst, stream); } } void cv::gpu::transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream) { transformPointsCaller(src, rvec, tvec, dst, StreamAccessor::getStream(stream)); } namespace { void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, cudaStream_t stream) { CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); CV_Assert(dist_coef.empty()); // Undistortion isn't supported // Convert rotation vector into matrix Mat rot; Rodrigues(rvec, rot); dst.create(src.size(), CV_32FC2); project_points::call(src, rot.ptr(), tvec.ptr(), camera_mat.ptr(), dst,stream); } } void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream) { projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream)); } namespace { // Selects subset_size random different points from [0, num_points - 1] range void selectRandom(int subset_size, int num_points, vector& subset) { subset.resize(subset_size); for (int i = 0; i < subset_size; ++i) { bool was; do { subset[i] = rand() % num_points; was = false; for (int j = 0; j < i; ++j) if (subset[j] == subset[i]) { was = true; break; } } while (was); } } // Computes rotation, translation pair for small subsets if the input data class TransformHypothesesGenerator { public: TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_, const Mat& camera_mat_, int num_points_, int subset_size_, Mat rot_matrices_, Mat transl_vectors_) : object(&object_), image(&image_), dist_coef(&dist_coef_), camera_mat(&camera_mat_), num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_), transl_vectors(transl_vectors_) {} void operator()(const BlockedRange& range) const { // Input data for generation of the current hypothesis vector subset_indices(subset_size); Mat_ object_subset(1, subset_size); Mat_ image_subset(1, subset_size); // Current hypothesis data Mat rot_vec(1, 3, CV_64F); Mat rot_mat(3, 3, CV_64F); Mat transl_vec(1, 3, CV_64F); for (int iter = range.begin(); iter < range.end(); ++iter) { selectRandom(subset_size, num_points, subset_indices); for (int i = 0; i < subset_size; ++i) { object_subset(0, i) = object->at(subset_indices[i]); image_subset(0, i) = image->at(subset_indices[i]); } solvePnP(object_subset, image_subset, *camera_mat, *dist_coef, rot_vec, transl_vec); // Remember translation vector Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3); transl_vec = transl_vec.reshape(0, 1); transl_vec.convertTo(transl_vec_, CV_32F); // Remember rotation matrix Rodrigues(rot_vec, rot_mat); Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3); rot_mat.convertTo(rot_mat_, CV_32F); } } const Mat* object; const Mat* image; const Mat* dist_coef; const Mat* camera_mat; int num_points; int subset_size; // Hypotheses storage (global) Mat rot_matrices; Mat transl_vectors; }; } void cv::gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess, int num_iters, float max_dist, int min_inlier_count, vector* inliers) { CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3); CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2); CV_Assert(object.cols == image.cols); CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); CV_Assert(!use_extrinsic_guess); // We don't support initial guess for now CV_Assert(num_iters <= solve_pnp_ransac::maxNumIters()); const int subset_size = 4; const int num_points = object.cols; CV_Assert(num_points >= subset_size); // Unapply distortion and intrinsic camera transformations Mat eye_camera_mat = Mat::eye(3, 3, CV_32F); Mat empty_dist_coef; Mat image_normalized; undistortPoints(image, image_normalized, camera_mat, dist_coef, Mat(), eye_camera_mat); // Hypotheses storage (global) Mat rot_matrices(1, num_iters * 9, CV_32F); Mat transl_vectors(1, num_iters * 3, CV_32F); // Generate set of hypotheses using small subsets of the input data TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat, num_points, subset_size, rot_matrices, transl_vectors); parallel_for(BlockedRange(0, num_iters), body); // Compute scores (i.e. number of inliers) for each hypothesis GpuMat d_object(object); GpuMat d_image_normalized(image_normalized); GpuMat d_hypothesis_scores(1, num_iters, CV_32S); solve_pnp_ransac::computeHypothesisScores( num_iters, num_points, rot_matrices.ptr(), transl_vectors.ptr(), d_object.ptr(), d_image_normalized.ptr(), max_dist * max_dist, d_hypothesis_scores.ptr()); // Find the best hypothesis index Point best_idx; double best_score; minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx); int num_inliers = static_cast(best_score); // Extract the best hypothesis data Mat rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3); Rodrigues(rot_mat, rvec); rvec = rvec.reshape(0, 1); tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone(); tvec = tvec.reshape(0, 1); // Build vector of inlier indices if (inliers != NULL) { inliers->clear(); inliers->reserve(num_inliers); Point3f p, p_transf; Point2f p_proj; const float* rot = rot_mat.ptr(); const float* transl = tvec.ptr(); for (int i = 0; i < num_points; ++i) { p = object.at(0, i); p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0]; p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1]; p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2]; p_proj.x = p_transf.x / p_transf.z; p_proj.y = p_transf.y / p_transf.z; if (norm(p_proj - image_normalized.at(0, i)) < max_dist) inliers->push_back(i); } } } #endif