/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" #include #include #include #include namespace cv { struct greaterThanPtr : public std::binary_function { bool operator () (const float * a, const float * b) const // Ensure a fully deterministic result of the sort { return (*a > *b) ? true : (*a < *b) ? false : (a > b); } }; #ifdef HAVE_OPENCL struct Corner { float val; short y; short x; bool operator < (const Corner & c) const // Ensure a fully deterministic result of the sort { return (val > c.val) ? true : (val < c.val) ? false : (y > c.y) ? true : (y < c.y) ? false : (x > c.x); } }; static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners, int maxCorners, double qualityLevel, double minDistance, InputArray _mask, int blockSize, bool useHarrisDetector, double harrisK ) { UMat eig, maxEigenValue; if( useHarrisDetector ) cornerHarris( _image, eig, blockSize, 3, harrisK ); else cornerMinEigenVal( _image, eig, blockSize, 3 ); Size imgsize = _image.size(); size_t total, i, j, ncorners = 0, possibleCornersCount = std::max(1024, static_cast(imgsize.area() * 0.1)); bool haveMask = !_mask.empty(); UMat corners_buffer(1, (int)possibleCornersCount + 1, CV_32FC2); CV_Assert(sizeof(Corner) == corners_buffer.elemSize()); Mat tmpCorners; // find threshold { CV_Assert(eig.type() == CV_32FC1); int dbsize = ocl::Device::getDefault().maxComputeUnits(); size_t wgs = ocl::Device::getDefault().maxWorkGroupSize(); int wgs2_aligned = 1; while (wgs2_aligned < (int)wgs) wgs2_aligned <<= 1; wgs2_aligned >>= 1; ocl::Kernel k("maxEigenVal", ocl::imgproc::gftt_oclsrc, format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D groupnum=%d -D WGS2_ALIGNED=%d%s", (int)wgs, dbsize, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "")); if (k.empty()) return false; UMat mask = _mask.getUMat(); maxEigenValue.create(1, dbsize, CV_32FC1); ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig), dbarg = ocl::KernelArg::PtrWriteOnly(maxEigenValue), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer); if (haveMask) k.args(eigarg, eig.cols, (int)eig.total(), dbarg, maskarg); else k.args(eigarg, eig.cols, (int)eig.total(), dbarg); size_t globalsize = dbsize * wgs; if (!k.run(1, &globalsize, &wgs, false)) return false; ocl::Kernel k2("maxEigenValTask", ocl::imgproc::gftt_oclsrc, format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D WGS2_ALIGNED=%d -D groupnum=%d", wgs, wgs2_aligned, dbsize)); if (k2.empty()) return false; k2.args(dbarg, (float)qualityLevel, cornersarg); if (!k2.runTask(false)) return false; } // collect list of pointers to features - put them into temporary image { ocl::Kernel k("findCorners", ocl::imgproc::gftt_oclsrc, format("-D OP_FIND_CORNERS%s", haveMask ? " -D HAVE_MASK" : "")); if (k.empty()) return false; ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig), cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer), thresholdarg = ocl::KernelArg::PtrReadOnly(maxEigenValue); if (!haveMask) k.args(eigarg, cornersarg, eig.rows - 2, eig.cols - 2, thresholdarg, (int)possibleCornersCount); else { UMat mask = _mask.getUMat(); k.args(eigarg, ocl::KernelArg::ReadOnlyNoSize(mask), cornersarg, eig.rows - 2, eig.cols - 2, thresholdarg, (int)possibleCornersCount); } size_t globalsize[2] = { (size_t)eig.cols - 2, (size_t)eig.rows - 2 }; if (!k.run(2, globalsize, NULL, false)) return false; tmpCorners = corners_buffer.getMat(ACCESS_RW); total = std::min(tmpCorners.at(0, 0)[0], possibleCornersCount); if (total == 0) { _corners.release(); return true; } } Corner* corner_ptr = tmpCorners.ptr() + 1; std::sort(corner_ptr, corner_ptr + total); std::vector corners; corners.reserve(total); if (minDistance >= 1) { // Partition the image into larger grids int w = imgsize.width, h = imgsize.height; const int cell_size = cvRound(minDistance); const int grid_width = (w + cell_size - 1) / cell_size; const int grid_height = (h + cell_size - 1) / cell_size; std::vector > grid(grid_width*grid_height); minDistance *= minDistance; for( i = 0; i < total; i++ ) { const Corner & c = corner_ptr[i]; bool good = true; int x_cell = c.x / cell_size; int y_cell = c.y / cell_size; int x1 = x_cell - 1; int y1 = y_cell - 1; int x2 = x_cell + 1; int y2 = y_cell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(grid_width - 1, x2); y2 = std::min(grid_height - 1, y2); for( int yy = y1; yy <= y2; yy++ ) for( int xx = x1; xx <= x2; xx++ ) { std::vector &m = grid[yy * grid_width + xx]; if( m.size() ) { for(j = 0; j < m.size(); j++) { float dx = c.x - m[j].x; float dy = c.y - m[j].y; if( dx*dx + dy*dy < minDistance ) { good = false; goto break_out; } } } } break_out: if (good) { grid[y_cell*grid_width + x_cell].push_back(Point2f((float)c.x, (float)c.y)); corners.push_back(Point2f((float)c.x, (float)c.y)); ++ncorners; if( maxCorners > 0 && (int)ncorners == maxCorners ) break; } } } else { for( i = 0; i < total; i++ ) { const Corner & c = corner_ptr[i]; corners.push_back(Point2f((float)c.x, (float)c.y)); ++ncorners; if( maxCorners > 0 && (int)ncorners == maxCorners ) break; } } Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); return true; } #endif } void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners, int maxCorners, double qualityLevel, double minDistance, InputArray _mask, int blockSize, bool useHarrisDetector, double harrisK ) { CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 ); CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) ); CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(), ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance, _mask, blockSize, useHarrisDetector, harrisK)) Mat image = _image.getMat(), eig, tmp; if (image.empty()) { _corners.release(); return; } if( useHarrisDetector ) cornerHarris( image, eig, blockSize, 3, harrisK ); else cornerMinEigenVal( image, eig, blockSize, 3 ); double maxVal = 0; minMaxLoc( eig, 0, &maxVal, 0, 0, _mask ); threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO ); dilate( eig, tmp, Mat()); Size imgsize = image.size(); std::vector tmpCorners; // collect list of pointers to features - put them into temporary image Mat mask = _mask.getMat(); for( int y = 1; y < imgsize.height - 1; y++ ) { const float* eig_data = (const float*)eig.ptr(y); const float* tmp_data = (const float*)tmp.ptr(y); const uchar* mask_data = mask.data ? mask.ptr(y) : 0; for( int x = 1; x < imgsize.width - 1; x++ ) { float val = eig_data[x]; if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) ) tmpCorners.push_back(eig_data + x); } } std::vector corners; size_t i, j, total = tmpCorners.size(), ncorners = 0; if (total == 0) { _corners.release(); return; } std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() ); if (minDistance >= 1) { // Partition the image into larger grids int w = image.cols; int h = image.rows; const int cell_size = cvRound(minDistance); const int grid_width = (w + cell_size - 1) / cell_size; const int grid_height = (h + cell_size - 1) / cell_size; std::vector > grid(grid_width*grid_height); minDistance *= minDistance; for( i = 0; i < total; i++ ) { int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr()); int y = (int)(ofs / eig.step); int x = (int)((ofs - y*eig.step)/sizeof(float)); bool good = true; int x_cell = x / cell_size; int y_cell = y / cell_size; int x1 = x_cell - 1; int y1 = y_cell - 1; int x2 = x_cell + 1; int y2 = y_cell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(grid_width-1, x2); y2 = std::min(grid_height-1, y2); for( int yy = y1; yy <= y2; yy++ ) { for( int xx = x1; xx <= x2; xx++ ) { std::vector &m = grid[yy*grid_width + xx]; if( m.size() ) { for(j = 0; j < m.size(); j++) { float dx = x - m[j].x; float dy = y - m[j].y; if( dx*dx + dy*dy < minDistance ) { good = false; goto break_out; } } } } } break_out: if (good) { grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y)); corners.push_back(Point2f((float)x, (float)y)); ++ncorners; if( maxCorners > 0 && (int)ncorners == maxCorners ) break; } } } else { for( i = 0; i < total; i++ ) { int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr()); int y = (int)(ofs / eig.step); int x = (int)((ofs - y*eig.step)/sizeof(float)); corners.push_back(Point2f((float)x, (float)y)); ++ncorners; if( maxCorners > 0 && (int)ncorners == maxCorners ) break; } } Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); } CV_IMPL void cvGoodFeaturesToTrack( const void* _image, void*, void*, CvPoint2D32f* _corners, int *_corner_count, double quality_level, double min_distance, const void* _maskImage, int block_size, int use_harris, double harris_k ) { cv::Mat image = cv::cvarrToMat(_image), mask; std::vector corners; if( _maskImage ) mask = cv::cvarrToMat(_maskImage); CV_Assert( _corners && _corner_count ); cv::goodFeaturesToTrack( image, corners, *_corner_count, quality_level, min_distance, mask, block_size, use_harris != 0, harris_k ); size_t i, ncorners = corners.size(); for( i = 0; i < ncorners; i++ ) _corners[i] = corners[i]; *_corner_count = (int)ncorners; } /* End of file. */