// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "test_precomp.hpp" namespace opencv_test { namespace { using namespace cv; /** Reprojects screen point to camera space given z coord. */ struct Reprojector { Reprojector() {} inline Reprojector(Matx33f intr) { fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1); cx = intr(0, 2), cy = intr(1, 2); } template inline cv::Point3_ operator()(cv::Point3_ p) const { T x = p.z * (p.x - cx) * fxinv; T y = p.z * (p.y - cy) * fyinv; return cv::Point3_(x, y, p.z); } float fxinv, fyinv, cx, cy; }; template struct RenderInvoker : ParallelLoopBody { RenderInvoker(Mat_& _frame, Affine3f _pose, Reprojector _reproj, float _depthFactor, bool _onlySemisphere) : ParallelLoopBody(), frame(_frame), pose(_pose), reproj(_reproj), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) { } virtual void operator ()(const cv::Range& r) const { for (int y = r.start; y < r.end; y++) { float* frameRow = frame[y]; for (int x = 0; x < frame.cols; x++) { float pix = 0; Point3f orig = pose.translation(); // direction through pixel Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f)); float xyt = 1.f / (screenVec.x * screenVec.x + screenVec.y * screenVec.y + 1.f); Point3f dir = normalize(Vec3f(pose.rotation() * screenVec)); // screen space axis dir.y = -dir.y; const float maxDepth = 20.f; const float maxSteps = 256; float t = 0.f; for (int step = 0; step < maxSteps && t < maxDepth; step++) { Point3f p = orig + dir * t; float d = Scene::map(p, onlySemisphere); if (d < 0.000001f) { float depth = std::sqrt(t * t * xyt); pix = depth * depthFactor; break; } t += d; } frameRow[x] = pix; } } } Mat_& frame; Affine3f pose; Reprojector reproj; float depthFactor; bool onlySemisphere; }; template struct RenderColorInvoker : ParallelLoopBody { RenderColorInvoker(Mat_& _frame, Affine3f _pose, Reprojector _reproj, float _depthFactor, bool _onlySemisphere) : ParallelLoopBody(), frame(_frame), pose(_pose), reproj(_reproj), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) { } virtual void operator ()(const cv::Range& r) const { for (int y = r.start; y < r.end; y++) { Vec3f* frameRow = frame[y]; for (int x = 0; x < frame.cols; x++) { Vec3f pix = 0; Point3f orig = pose.translation(); // direction through pixel Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f)); Point3f dir = normalize(Vec3f(pose.rotation() * screenVec)); // screen space axis dir.y = -dir.y; const float maxDepth = 20.f; const float maxSteps = 256; float t = 0.f; for (int step = 0; step < maxSteps && t < maxDepth; step++) { Point3f p = orig + dir * t; float d = Scene::map(p, onlySemisphere); if (d < 0.000001f) { float m = 0.25f; float p0 = float(abs(fmod(p.x, m)) > m / 2.f); float p1 = float(abs(fmod(p.y, m)) > m / 2.f); float p2 = float(abs(fmod(p.z, m)) > m / 2.f); pix[0] = p0 + p1; pix[1] = p1 + p2; pix[2] = p0 + p2; pix *= 128.f; break; } t += d; } frameRow[x] = pix; } } } Mat_& frame; Affine3f pose; Reprojector reproj; float depthFactor; bool onlySemisphere; }; struct Scene { virtual ~Scene() {} static Ptr create(Size sz, Matx33f _intr, float _depthFactor, bool onlySemisphere); virtual Mat depth(Affine3f pose) = 0; virtual Mat rgb(Affine3f pose) = 0; virtual std::vector getPoses() = 0; }; struct SemisphereScene : Scene { const int framesPerCycle = 72; const float nCycles = 0.25f; const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -2.1f)); Size frameSize; Matx33f intr; float depthFactor; bool onlySemisphere; SemisphereScene(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) : frameSize(sz), intr(_intr), depthFactor(_depthFactor), onlySemisphere(_onlySemisphere) { } static float map(Point3f p, bool onlySemisphere) { float plane = p.y + 0.5f; Point3f spherePose = p - Point3f(-0.0f, 0.3f, 1.1f); float sphereRadius = 0.5f; float sphere = (float)cv::norm(spherePose) - sphereRadius; float sphereMinusBox = sphere; float subSphereRadius = 0.05f; Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f); float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius; float res; if (!onlySemisphere) res = min({ sphereMinusBox, subSphere, plane }); else res = sphereMinusBox; return res; } Mat depth(Affine3f pose) override { Mat_ frame(frameSize); Reprojector reproj(intr); Range range(0, frame.rows); parallel_for_(range, RenderInvoker(frame, pose, reproj, depthFactor, onlySemisphere)); return std::move(frame); } Mat rgb(Affine3f pose) override { Mat_ frame(frameSize); Reprojector reproj(intr); Range range(0, frame.rows); parallel_for_(range, RenderColorInvoker(frame, pose, reproj, depthFactor, onlySemisphere)); return std::move(frame); } std::vector getPoses() override { std::vector poses; for (int i = 0; i < framesPerCycle * nCycles; i++) { float angle = (float)(CV_2PI * i / framesPerCycle); Affine3f pose; pose = pose.rotate(startPose.rotation()); pose = pose.rotate(Vec3f(0.f, -0.5f, 0.f) * angle); pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle), startPose.translation()[1], startPose.translation()[2] * cos(angle))); poses.push_back(pose); } return poses; } }; Ptr Scene::create(Size sz, Matx33f _intr, float _depthFactor, bool _onlySemisphere) { return makePtr(sz, _intr, _depthFactor, _onlySemisphere); } // this is a temporary solution // ---------------------------- typedef cv::Vec4f ptype; typedef cv::Mat_< ptype > Points; typedef cv::Mat_< ptype > Colors; typedef Points Normals; typedef Size2i Size; template inline float specPow(float x) { if (p % 2 == 0) { float v = specPow

(x); return v * v; } else { float v = specPow<(p - 1) / 2>(x); return v * v * x; } } template<> inline float specPow<0>(float /*x*/) { return 1.f; } template<> inline float specPow<1>(float x) { return x; } inline cv::Vec3f fromPtype(const ptype& x) { return cv::Vec3f(x[0], x[1], x[2]); } inline Point3f normalize(const Vec3f& v) { double nv = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); return v * (nv ? 1. / nv : 0.); } void renderPointsNormals(InputArray _points, InputArray _normals, OutputArray image, Affine3f lightPose) { Size sz = _points.size(); image.create(sz, CV_8UC4); Points points = _points.getMat(); Normals normals = _normals.getMat(); Mat_ img = image.getMat(); Range range(0, sz.height); const int nstripes = -1; parallel_for_(range, [&](const Range&) { for (int y = range.start; y < range.end; y++) { Vec4b* imgRow = img[y]; const ptype* ptsRow = points[y]; const ptype* nrmRow = normals[y]; for (int x = 0; x < sz.width; x++) { Point3f p = fromPtype(ptsRow[x]); Point3f n = fromPtype(nrmRow[x]); Vec4b color; if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z)) { color = Vec4b(0, 32, 0, 0); } else { const float Ka = 0.3f; //ambient coeff const float Kd = 0.5f; //diffuse coeff const float Ks = 0.2f; //specular coeff const int sp = 20; //specular power const float Ax = 1.f; //ambient color, can be RGB const float Dx = 1.f; //diffuse color, can be RGB const float Sx = 1.f; //specular color, can be RGB const float Lx = 1.f; //light color Point3f l = normalize(lightPose.translation() - Vec3f(p)); Point3f v = normalize(-Vec3f(p)); Point3f r = normalize(Vec3f(2.f * n * n.dot(l) - l)); uchar ix = (uchar)((Ax * Ka * Dx + Lx * Kd * Dx * max(0.f, n.dot(l)) + Lx * Ks * Sx * specPow(max(0.f, r.dot(v)))) * 255.f); color = Vec4b(ix, ix, ix, 0); } imgRow[x] = color; } } }, nstripes); } void renderPointsNormalsColors(InputArray _points, InputArray, InputArray _colors, OutputArray image, Affine3f) { Size sz = _points.size(); image.create(sz, CV_8UC4); Points points = _points.getMat(); Colors colors = _colors.getMat(); Mat_ img = image.getMat(); Range range(0, sz.height); const int nstripes = -1; parallel_for_(range, [&](const Range&) { for (int y = range.start; y < range.end; y++) { Vec4b* imgRow = img[y]; const ptype* ptsRow = points[y]; const ptype* clrRow = colors[y]; for (int x = 0; x < sz.width; x++) { Point3f p = fromPtype(ptsRow[x]); Point3f c = fromPtype(clrRow[x]); Vec4b color; if (cvIsNaN(p.x) || cvIsNaN(p.y) || cvIsNaN(p.z) || cvIsNaN(c.x) || cvIsNaN(c.y) || cvIsNaN(c.z)) { color = Vec4b(0, 32, 0, 0); } else { color = Vec4b((uchar)c.x, (uchar)c.y, (uchar)c.z, (uchar)0); } imgRow[x] = color; } } }, nstripes); } // ---------------------------- void displayImage(Mat depth, Mat points, Mat normals, float depthFactor, Vec3f lightPose) { Mat image; patchNaNs(points); imshow("depth", depth * (1.f / depthFactor / 4.f)); renderPointsNormals(points, normals, image, lightPose); imshow("render", image); waitKey(2000); destroyAllWindows(); } void displayColorImage(Mat depth, Mat rgb, Mat points, Mat normals, Mat colors, float depthFactor, Vec3f lightPose) { Mat image; patchNaNs(points); imshow("depth", depth * (1.f / depthFactor / 4.f)); imshow("rgb", rgb * (1.f / 255.f)); renderPointsNormalsColors(points, normals, colors, image, lightPose); imshow("render", image); waitKey(2000); destroyAllWindows(); } void normalsCheck(Mat normals) { Vec4f vector; int counter = 0; for (auto pvector = normals.begin(); pvector < normals.end(); pvector++) { vector = *pvector; if (!cvIsNaN(vector[0])) { counter++; float length = vector[0] * vector[0] + vector[1] * vector[1] + vector[2] * vector[2]; ASSERT_LT(abs(1 - length), 0.0001f) << "There is normal with length != 1"; } } ASSERT_GT(counter, 0) << "There are not normals"; } int counterOfValid(Mat points) { Vec4f* v; int i, j; int count = 0; for (i = 0; i < points.rows; ++i) { v = (points.ptr(i)); for (j = 0; j < points.cols; ++j) { if ((v[j])[0] != 0 || (v[j])[1] != 0 || (v[j])[2] != 0) { count++; } } } return count; } enum class VolumeTestFunction { RAYCAST = 0, FETCH_NORMALS = 1, FETCH_POINTS_NORMALS = 2 }; enum class VolumeTestSrcType { MAT = 0, ODOMETRY_FRAME = 1 }; void normal_test_custom_framesize(VolumeType volumeType, VolumeTestFunction testFunction, VolumeTestSrcType testSrcType) { VolumeSettings vs(volumeType); Volume volume(volumeType, vs); Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight()); Matx33f intr; vs.getCameraIntegrateIntrinsics(intr); bool onlySemisphere = false; float depthFactor = vs.getDepthFactor(); Vec3f lightPose = Vec3f::all(0.f); Ptr scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere); std::vector poses = scene->getPoses(); Mat depth = scene->depth(poses[0]); Mat rgb = scene->rgb(poses[0]); Mat points, normals, tmpnormals, colors; OdometryFrame odf; odf.setDepth(depth); odf.setImage(rgb); if (testSrcType == VolumeTestSrcType::MAT) { if (volumeType == VolumeType::ColorTSDF) volume.integrate(depth, rgb, poses[0].matrix); else volume.integrate(depth, poses[0].matrix); } else { volume.integrate(odf, poses[0].matrix); } if (testFunction == VolumeTestFunction::RAYCAST) { if (testSrcType == VolumeTestSrcType::MAT) { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, points, normals, colors); else volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, points, normals); } else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) { volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, odf); odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); odf.getPyramidAt(normals, OdometryFramePyramidType::PYR_NORM, 0); if (volumeType == VolumeType::ColorTSDF) odf.getPyramidAt(colors, OdometryFramePyramidType::PYR_IMAGE, 0); } } else if (testFunction == VolumeTestFunction::FETCH_NORMALS) { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, points, tmpnormals, colors); else // hash_tsdf cpu don't works with raycast normals //volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, points, tmpnormals); volume.fetchPointsNormals(points, tmpnormals); volume.fetchNormals(points, normals); } else if (testFunction == VolumeTestFunction::FETCH_POINTS_NORMALS) { volume.fetchPointsNormals(points, normals); } if (testFunction == VolumeTestFunction::RAYCAST && cvtest::debugLevel > 0) { if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } normalsCheck(normals); } void normal_test_common_framesize(VolumeType volumeType, VolumeTestFunction testFunction, VolumeTestSrcType testSrcType) { VolumeSettings vs(volumeType); Volume volume(volumeType, vs); Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight()); Matx33f intr; vs.getCameraIntegrateIntrinsics(intr); bool onlySemisphere = false; float depthFactor = vs.getDepthFactor(); Vec3f lightPose = Vec3f::all(0.f); Ptr scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere); std::vector poses = scene->getPoses(); Mat depth = scene->depth(poses[0]); Mat rgb = scene->rgb(poses[0]); Mat points, normals, tmpnormals, colors; OdometryFrame odf; odf.setDepth(depth); odf.setImage(rgb); if (testSrcType == VolumeTestSrcType::MAT) { if (volumeType == VolumeType::ColorTSDF) volume.integrate(depth, rgb, poses[0].matrix); else volume.integrate(depth, poses[0].matrix); } else { volume.integrate(odf, poses[0].matrix); } if (testFunction == VolumeTestFunction::RAYCAST) { if (testSrcType == VolumeTestSrcType::MAT) { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[0].matrix, points, normals, colors); else volume.raycast(poses[0].matrix, points, normals); } else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) { volume.raycast(poses[0].matrix, odf); odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); odf.getPyramidAt(normals, OdometryFramePyramidType::PYR_NORM, 0); if (volumeType == VolumeType::ColorTSDF) odf.getPyramidAt(colors, OdometryFramePyramidType::PYR_IMAGE, 0); } } else if (testFunction == VolumeTestFunction::FETCH_NORMALS) { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[0].matrix, points, tmpnormals, colors); else // hash_tsdf cpu don't works with raycast normals //volume.raycast(poses[0].matrix, points, tmpnormals); volume.fetchPointsNormals(points, tmpnormals); volume.fetchNormals(points, normals); } else if (testFunction == VolumeTestFunction::FETCH_POINTS_NORMALS) { volume.fetchPointsNormals(points, normals); } if (testFunction == VolumeTestFunction::RAYCAST && cvtest::debugLevel > 0) { if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } normalsCheck(normals); } void valid_points_test_custom_framesize(VolumeType volumeType, VolumeTestSrcType testSrcType) { VolumeSettings vs(volumeType); Volume volume(volumeType, vs); Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight()); Matx33f intr; vs.getCameraIntegrateIntrinsics(intr); bool onlySemisphere = true; float depthFactor = vs.getDepthFactor(); Vec3f lightPose = Vec3f::all(0.f); Ptr scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere); std::vector poses = scene->getPoses(); Mat depth = scene->depth(poses[0]); Mat rgb = scene->rgb(poses[0]); Mat points, normals, colors, newPoints, newNormals; int anfas, profile; OdometryFrame odf; odf.setDepth(depth); odf.setImage(rgb); if (testSrcType == VolumeTestSrcType::MAT) { if (volumeType == VolumeType::ColorTSDF) volume.integrate(depth, rgb, poses[0].matrix); else volume.integrate(depth, poses[0].matrix); } else { volume.integrate(odf, poses[0].matrix); } if (testSrcType == VolumeTestSrcType::MAT) // Odometry frame or Mats { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, points, normals, colors); else volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, points, normals); } else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) { volume.raycast(poses[0].matrix, frameSize.height, frameSize.width, odf); odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); odf.getPyramidAt(normals, OdometryFramePyramidType::PYR_NORM, 0); if (volumeType == VolumeType::ColorTSDF) odf.getPyramidAt(colors, OdometryFramePyramidType::PYR_IMAGE, 0); } patchNaNs(points); anfas = counterOfValid(points); if (cvtest::debugLevel > 0) { if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } points.release(); normals.release(); if (testSrcType == VolumeTestSrcType::MAT) // Odometry frame or Mats { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[17].matrix, frameSize.height, frameSize.width, points, normals, colors); else volume.raycast(poses[17].matrix, frameSize.height, frameSize.width, points, normals); } else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) { volume.raycast(poses[17].matrix, frameSize.height, frameSize.width, odf); odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); odf.getPyramidAt(normals, OdometryFramePyramidType::PYR_NORM, 0); if (volumeType == VolumeType::ColorTSDF) odf.getPyramidAt(colors, OdometryFramePyramidType::PYR_IMAGE, 0); } patchNaNs(points); profile = counterOfValid(points); if (cvtest::debugLevel > 0) { if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } // TODO: why profile == 2*anfas ? float percentValidity = float(anfas) / float(profile); ASSERT_NE(profile, 0) << "There is no points in profile"; ASSERT_NE(anfas, 0) << "There is no points in anfas"; ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")"; } void valid_points_test_common_framesize(VolumeType volumeType, VolumeTestSrcType testSrcType) { VolumeSettings vs(volumeType); Volume volume(volumeType, vs); Size frameSize(vs.getRaycastWidth(), vs.getRaycastHeight()); Matx33f intr; vs.getCameraIntegrateIntrinsics(intr); bool onlySemisphere = true; float depthFactor = vs.getDepthFactor(); Vec3f lightPose = Vec3f::all(0.f); Ptr scene = Scene::create(frameSize, intr, depthFactor, onlySemisphere); std::vector poses = scene->getPoses(); Mat depth = scene->depth(poses[0]); Mat rgb = scene->rgb(poses[0]); Mat points, normals, colors, newPoints, newNormals; int anfas, profile; OdometryFrame odf; odf.setDepth(depth); odf.setImage(rgb); if (testSrcType == VolumeTestSrcType::MAT) { if (volumeType == VolumeType::ColorTSDF) volume.integrate(depth, rgb, poses[0].matrix); else volume.integrate(depth, poses[0].matrix); } else { volume.integrate(odf, poses[0].matrix); } if (testSrcType == VolumeTestSrcType::MAT) // Odometry frame or Mats { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[0].matrix, points, normals, colors); else volume.raycast(poses[0].matrix, points, normals); } else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) { volume.raycast(poses[0].matrix, odf); odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); odf.getPyramidAt(normals, OdometryFramePyramidType::PYR_NORM, 0); if (volumeType == VolumeType::ColorTSDF) odf.getPyramidAt(colors, OdometryFramePyramidType::PYR_IMAGE, 0); } patchNaNs(points); anfas = counterOfValid(points); if (cvtest::debugLevel > 0) { if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } points.release(); normals.release(); if (testSrcType == VolumeTestSrcType::MAT) // Odometry frame or Mats { if (volumeType == VolumeType::ColorTSDF) volume.raycast(poses[17].matrix, points, normals, colors); else volume.raycast(poses[17].matrix, points, normals); } else if (testSrcType == VolumeTestSrcType::ODOMETRY_FRAME) { volume.raycast(poses[17].matrix, odf); odf.getPyramidAt(points, OdometryFramePyramidType::PYR_CLOUD, 0); odf.getPyramidAt(normals, OdometryFramePyramidType::PYR_NORM, 0); if (volumeType == VolumeType::ColorTSDF) odf.getPyramidAt(colors, OdometryFramePyramidType::PYR_IMAGE, 0); } patchNaNs(points); profile = counterOfValid(points); if (cvtest::debugLevel > 0) { if (volumeType == VolumeType::ColorTSDF) displayColorImage(depth, rgb, points, normals, colors, depthFactor, lightPose); else displayImage(depth, points, normals, depthFactor, lightPose); } // TODO: why profile == 2*anfas ? float percentValidity = float(anfas) / float(profile); ASSERT_NE(profile, 0) << "There is no points in profile"; ASSERT_NE(anfas, 0) << "There is no points in anfas"; ASSERT_LT(abs(0.5 - percentValidity), 0.3) << "percentValidity out of [0.3; 0.7] (percentValidity=" << percentValidity << ")"; } #ifndef HAVE_OPENCL TEST(TSDF, raycast_custom_framesize_normals_mat) { normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); } TEST(TSDF, raycast_custom_framesize_normals_frame) { normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(TSDF, raycast_common_framesize_normals_mat) { normal_test_common_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); } TEST(TSDF, raycast_common_framesize_normals_frame) { normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(TSDF, fetch_points_normals) { normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT); } TEST(TSDF, fetch_normals) { normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT); } TEST(TSDF, valid_points_custom_framesize_mat) { valid_points_test_custom_framesize(VolumeType::TSDF, VolumeTestSrcType::MAT); } TEST(TSDF, valid_points_custom_framesize_frame) { valid_points_test_custom_framesize(VolumeType::TSDF, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(TSDF, valid_points_common_framesize_mat) { valid_points_test_common_framesize(VolumeType::TSDF, VolumeTestSrcType::MAT); } TEST(TSDF, valid_points_common_framesize_frame) { valid_points_test_common_framesize(VolumeType::TSDF, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(HashTSDF, raycast_custom_framesize_normals_mat) { normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); } TEST(HashTSDF, raycast_custom_framesize_normals_frame) { normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(HashTSDF, raycast_common_framesize_normals_mat) { normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); } TEST(HashTSDF, raycast_common_framesize_normals_frame) { normal_test_common_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(HashTSDF, fetch_points_normals) { normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT); } TEST(HashTSDF, fetch_normals) { normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT); } TEST(HashTSDF, valid_points_custom_framesize_mat) { valid_points_test_custom_framesize(VolumeType::HashTSDF, VolumeTestSrcType::MAT); } TEST(HashTSDF, valid_points_custom_framesize_frame) { valid_points_test_custom_framesize(VolumeType::HashTSDF, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(HashTSDF, valid_points_common_framesize_mat) { valid_points_test_common_framesize(VolumeType::HashTSDF, VolumeTestSrcType::MAT); } TEST(HashTSDF, valid_points_common_framesize_frame) { valid_points_test_common_framesize(VolumeType::HashTSDF, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(ColorTSDF, raycast_custom_framesize_normals_mat) { normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); } TEST(ColorTSDF, raycast_custom_framesize_normals_frame) { normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(ColorTSDF, raycast_common_framesize_normals_mat) { normal_test_common_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); } TEST(ColorTSDF, raycast_common_framesize_normals_frame) { normal_test_common_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(ColorTSDF, fetch_normals) { normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT); } TEST(ColorTSDF, fetch_points_normals) { normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT); } TEST(ColorTSDF, valid_points_custom_framesize_mat) { valid_points_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::MAT); } TEST(ColorTSDF, valid_points_custom_framesize_fetch) { valid_points_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::ODOMETRY_FRAME); } TEST(ColorTSDF, valid_points_common_framesize_mat) { valid_points_test_common_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::MAT); } TEST(ColorTSDF, valid_points_common_framesize_fetch) { valid_points_test_common_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::ODOMETRY_FRAME); } #else TEST(TSDF_CPU, raycast_custom_framesize_normals_mat) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, raycast_custom_framesize_normals_frame) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, raycast_common_framesize_normals_mat) { cv::ocl::setUseOpenCL(false); normal_test_common_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, raycast_common_framesize_normals_frame) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, fetch_points_normals) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, fetch_normals) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::TSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, valid_points_custom_framesize_mat) { cv::ocl::setUseOpenCL(false); valid_points_test_custom_framesize(VolumeType::TSDF, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, valid_points_custom_framesize_frame) { cv::ocl::setUseOpenCL(false); valid_points_test_custom_framesize(VolumeType::TSDF, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, valid_points_common_framesize_mat) { cv::ocl::setUseOpenCL(false); valid_points_test_common_framesize(VolumeType::TSDF, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(TSDF_CPU, valid_points_common_framesize_frame) { cv::ocl::setUseOpenCL(false); valid_points_test_common_framesize(VolumeType::TSDF, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, raycast_custom_framesize_normals_mat) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, raycast_custom_framesize_normals_frame) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, raycast_common_framesize_normals_mat) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, raycast_common_framesize_normals_frame) { cv::ocl::setUseOpenCL(false); normal_test_common_framesize(VolumeType::HashTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, fetch_points_normals) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, fetch_normals) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::HashTSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, valid_points_custom_framesize_mat) { cv::ocl::setUseOpenCL(false); valid_points_test_custom_framesize(VolumeType::HashTSDF, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, valid_points_custom_framesize_frame) { cv::ocl::setUseOpenCL(false); valid_points_test_custom_framesize(VolumeType::HashTSDF, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, valid_points_common_framesize_mat) { cv::ocl::setUseOpenCL(false); valid_points_test_common_framesize(VolumeType::HashTSDF, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(HashTSDF_CPU, valid_points_common_framesize_frame) { cv::ocl::setUseOpenCL(false); valid_points_test_common_framesize(VolumeType::HashTSDF, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, raycast_custom_framesize_normals_mat) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, raycast_custom_framesize_normals_frame) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, raycast_common_framesize_normals_mat) { cv::ocl::setUseOpenCL(false); normal_test_common_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, raycast_common_framesize_normals_frame) { cv::ocl::setUseOpenCL(false); normal_test_common_framesize(VolumeType::ColorTSDF, VolumeTestFunction::RAYCAST, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, fetch_normals) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::FETCH_NORMALS, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, fetch_points_normals) { cv::ocl::setUseOpenCL(false); normal_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestFunction::FETCH_POINTS_NORMALS, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, valid_points_custom_framesize_mat) { cv::ocl::setUseOpenCL(false); valid_points_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, valid_points_custom_framesize_fetch) { cv::ocl::setUseOpenCL(false); valid_points_test_custom_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, valid_points_common_framesize_mat) { cv::ocl::setUseOpenCL(false); valid_points_test_common_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::MAT); cv::ocl::setUseOpenCL(true); } TEST(ColorTSDF_CPU, valid_points_common_framesize_fetch) { cv::ocl::setUseOpenCL(false); valid_points_test_common_framesize(VolumeType::ColorTSDF, VolumeTestSrcType::ODOMETRY_FRAME); cv::ocl::setUseOpenCL(true); } #endif } } // namespace