Cascade Classifier {#tutorial_cascade_classifier} ================== Goal ---- In this tutorial you will learn how to: - Use the @ref cv::CascadeClassifier class to detect objects in a video stream. Particularly, we will use the functions: - @ref cv::CascadeClassifier::load to load a .xml classifier file. It can be either a Haar or a LBP classifer - @ref cv::CascadeClassifier::detectMultiScale to perform the detection. Theory ------ Code ---- This tutorial code's is shown lines below. You can also download it from [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp) . The second version (using LBP for face detection) can be [found here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp) @code{.cpp} #include "opencv2/objdetect.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include #include using namespace std; using namespace cv; /* Function Headers */ void detectAndDisplay( Mat frame ); /* Global variables */ String face_cascade_name = "haarcascade_frontalface_alt.xml"; String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml"; CascadeClassifier face_cascade; CascadeClassifier eyes_cascade; String window_name = "Capture - Face detection"; /* @function main */ int main( void ) { VideoCapture capture; Mat frame; //-- 1. Load the cascades if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade\n"); return -1; }; if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading eyes cascade\n"); return -1; }; //-- 2. Read the video stream capture.open( -1 ); if ( ! capture.isOpened() ) { printf("--(!)Error opening video capture\n"); return -1; } while ( capture.read(frame) ) { if( frame.empty() ) { printf(" --(!) No captured frame -- Break!"); break; } //-- 3. Apply the classifier to the frame detectAndDisplay( frame ); int c = waitKey(10); if( (char)c == 27 ) { break; } // escape } return 0; } /* @function detectAndDisplay */ void detectAndDisplay( Mat frame ) { std::vector faces; Mat frame_gray; cvtColor( frame, frame_gray, COLOR_BGR2GRAY ); equalizeHist( frame_gray, frame_gray ); //-- Detect faces face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CASCADE_SCALE_IMAGE, Size(30, 30) ); for( size_t i = 0; i < faces.size(); i++ ) { Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 ); ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); Mat faceROI = frame_gray( faces[i] ); std::vector eyes; //-- In each face, detect eyes eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CASCADE_SCALE_IMAGE, Size(30, 30) ); for( size_t j = 0; j < eyes.size(); j++ ) { Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 ); int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 ); circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 ); } } //-- Show what you got imshow( window_name, frame ); } @endcode Explanation ----------- Result ------ -# Here is the result of running the code above and using as input the video stream of a build-in webcam: ![](images/Cascade_Classifier_Tutorial_Result_Haar.jpg) Remember to copy the files *haarcascade_frontalface_alt.xml* and *haarcascade_eye_tree_eyeglasses.xml* in your current directory. They are located in *opencv/data/haarcascades* -# This is the result of using the file *lbpcascade_frontalface.xml* (LBP trained) for the face detection. For the eyes we keep using the file used in the tutorial. ![](images/Cascade_Classifier_Tutorial_Result_LBP.jpg)