//////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Shengen Yan,yanshengen@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // #ifdef DOUBLE_SUPPORT #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #endif #define noconvert #define EXTRA_PARAMS #if defined OP_SUM || defined OP_SUM_ABS || defined OP_SUM_SQR #if OP_SUM #define FUNC(a, b) a += b #elif OP_SUM_ABS #define FUNC(a, b) a += b >= (dstT)(0) ? b : -b #elif OP_SUM_SQR #define FUNC(a, b) a += b * b #endif #define DECLARE_LOCAL_MEM \ __local dstT localmem[WGS2_ALIGNED] #define DEFINE_ACCUMULATOR \ dstT accumulator = (dstT)(0) #define REDUCE_GLOBAL \ dstT temp = convertToDT(src[0]); \ FUNC(accumulator, temp) #define SET_LOCAL_1 \ localmem[lid] = accumulator #define REDUCE_LOCAL_1 \ localmem[lid - WGS2_ALIGNED] += accumulator #define REDUCE_LOCAL_2 \ localmem[lid] += localmem[lid2] #define CALC_RESULT \ __global dstT * dst = (__global dstT *)(dstptr + (int)sizeof(dstT) * gid); \ dst[0] = localmem[0] #elif defined OP_COUNT_NON_ZERO #define dstT int #define DECLARE_LOCAL_MEM \ __local dstT localmem[WGS2_ALIGNED] #define DEFINE_ACCUMULATOR \ dstT accumulator = (dstT)(0); \ srcT zero = (srcT)(0), one = (srcT)(1) #define REDUCE_GLOBAL \ accumulator += src[0] == zero ? zero : one #define SET_LOCAL_1 \ localmem[lid] = accumulator #define REDUCE_LOCAL_1 \ localmem[lid - WGS2_ALIGNED] += accumulator #define REDUCE_LOCAL_2 \ localmem[lid] += localmem[lid2] #define CALC_RESULT \ __global dstT * dst = (__global dstT *)(dstptr + (int)sizeof(dstT) * gid); \ dst[0] = localmem[0] #elif defined OP_MIN_MAX_LOC || defined OP_MIN_MAX_LOC_MASK #if defined (DEPTH_0) #define srcT uchar #define MIN_VAL 0 #define MAX_VAL 255 #endif #if defined (DEPTH_1) #define srcT char #define MIN_VAL -128 #define MAX_VAL 127 #endif #if defined (DEPTH_2) #define srcT ushort #define MIN_VAL 0 #define MAX_VAL 65535 #endif #if defined (DEPTH_3) #define srcT short #define MIN_VAL -32768 #define MAX_VAL 32767 #endif #if defined (DEPTH_4) #define srcT int #define MIN_VAL INT_MIN #define MAX_VAL INT_MAX #endif #if defined (DEPTH_5) #define srcT float #define MIN_VAL (-FLT_MAX) #define MAX_VAL FLT_MAX #endif #if defined (DEPTH_6) #define srcT double #define MIN_VAL (-DBL_MAX) #define MAX_VAL DBL_MAX #endif #define DECLARE_LOCAL_MEM \ __local srcT localmem_min[WGS2_ALIGNED]; \ __local srcT localmem_max[WGS2_ALIGNED]; \ __local int localmem_minloc[WGS2_ALIGNED]; \ __local int localmem_maxloc[WGS2_ALIGNED] #define DEFINE_ACCUMULATOR \ srcT minval = MAX_VAL; \ srcT maxval = MIN_VAL; \ int negative = -1; \ int minloc = negative; \ int maxloc = negative; \ srcT temp; \ int temploc #define REDUCE_GLOBAL \ temp = src[0]; \ temploc = id; \ srcT temp_minval = minval, temp_maxval = maxval; \ minval = min(minval, temp); \ maxval = max(maxval, temp); \ minloc = (minval == temp_minval) ? (temp_minval == MAX_VAL) ? temploc : minloc : temploc; \ maxloc = (maxval == temp_maxval) ? (temp_maxval == MIN_VAL) ? temploc : maxloc : temploc #define SET_LOCAL_1 \ localmem_min[lid] = minval; \ localmem_max[lid] = maxval; \ localmem_minloc[lid] = minloc; \ localmem_maxloc[lid] = maxloc #define REDUCE_LOCAL_1 \ srcT oldmin = localmem_min[lid-WGS2_ALIGNED]; \ srcT oldmax = localmem_max[lid-WGS2_ALIGNED]; \ localmem_min[lid - WGS2_ALIGNED] = min(minval,localmem_min[lid-WGS2_ALIGNED]); \ localmem_max[lid - WGS2_ALIGNED] = max(maxval,localmem_max[lid-WGS2_ALIGNED]); \ srcT minv = localmem_min[lid - WGS2_ALIGNED], maxv = localmem_max[lid - WGS2_ALIGNED]; \ localmem_minloc[lid - WGS2_ALIGNED] = (minv == minval) ? (minv == oldmin) ? \ min(minloc, localmem_minloc[lid-WGS2_ALIGNED]) : minloc : localmem_minloc[lid-WGS2_ALIGNED]; \ localmem_maxloc[lid - WGS2_ALIGNED] = (maxv == maxval) ? (maxv == oldmax) ? \ min(maxloc, localmem_maxloc[lid-WGS2_ALIGNED]) : maxloc : localmem_maxloc[lid-WGS2_ALIGNED] #define REDUCE_LOCAL_2 \ srcT oldmin = localmem_min[lid]; \ srcT oldmax = localmem_max[lid]; \ localmem_min[lid] = min(localmem_min[lid], localmem_min[lid2]); \ localmem_max[lid] = max(localmem_max[lid], localmem_max[lid2]); \ srcT min1 = localmem_min[lid], min2 = localmem_min[lid2]; \ localmem_minloc[lid] = (localmem_minloc[lid] == negative) ? localmem_minloc[lid2] : (localmem_minloc[lid2] == negative) ? \ localmem_minloc[lid] : (min1 == min2) ? (min1 == oldmin) ? min(localmem_minloc[lid2],localmem_minloc[lid]) : \ localmem_minloc[lid2] : localmem_minloc[lid]; \ srcT max1 = localmem_max[lid], max2 = localmem_max[lid2]; \ localmem_maxloc[lid] = (localmem_maxloc[lid] == negative) ? localmem_maxloc[lid2] : (localmem_maxloc[lid2] == negative) ? \ localmem_maxloc[lid] : (max1 == max2) ? (max1 == oldmax) ? min(localmem_maxloc[lid2],localmem_maxloc[lid]) : \ localmem_maxloc[lid2] : localmem_maxloc[lid] #define CALC_RESULT \ __global srcT * dstminval = (__global srcT *)(dstptr + (int)sizeof(srcT) * gid); \ __global srcT * dstmaxval = (__global srcT *)(dstptr2 + (int)sizeof(srcT) * gid); \ dstminval[0] = localmem_min[0]; \ dstmaxval[0] = localmem_max[0]; \ dstlocptr[gid] = localmem_minloc[0]; \ dstlocptr2[gid] = localmem_maxloc[0] #if defined OP_MIN_MAX_LOC_MASK #undef DEFINE_ACCUMULATOR #define DEFINE_ACCUMULATOR \ srcT minval = MAX_VAL; \ srcT maxval = MIN_VAL; \ int negative = -1; \ int minloc = negative; \ int maxloc = negative; \ srcT temp, temp_mask, zeroVal = (srcT)(0); \ int temploc #undef REDUCE_GLOBAL #define REDUCE_GLOBAL \ temp = src[0]; \ temploc = id; \ int mask_index = mad24(id / cols, mask_step, mask_offset + (id % cols) * (int)sizeof(uchar)); \ __global const uchar * mask = (__global const uchar *)(maskptr + mask_index); \ temp_mask = mask[0]; \ srcT temp_minval = minval, temp_maxval = maxval; \ minval = (temp_mask == zeroVal) ? minval : min(minval, temp); \ maxval = (temp_mask == zeroVal) ? maxval : max(maxval, temp); \ minloc = (temp_mask == zeroVal) ? minloc : (minval == temp_minval) ? (temp_minval == MAX_VAL) ? temploc : minloc : temploc; \ maxloc = (temp_mask == zeroVal) ? maxloc : (maxval == temp_maxval) ? (temp_maxval == MIN_VAL) ? temploc : maxloc : temploc #endif #else #error "No operation" #endif #if defined OP_MIN_MAX_LOC #undef EXTRA_PARAMS #define EXTRA_PARAMS , __global uchar * dstptr2, __global int * dstlocptr, __global int * dstlocptr2 #endif #if defined OP_MIN_MAX_LOC_MASK #undef EXTRA_PARAMS #define EXTRA_PARAMS , __global uchar * dstptr2, __global int * dstlocptr, __global int * dstlocptr2, \ __global const uchar * maskptr, int mask_step, int mask_offset, __global int * test #endif __kernel void reduce(__global const uchar * srcptr, int step, int offset, int cols, int total, int groupnum, __global uchar * dstptr EXTRA_PARAMS) { int lid = get_local_id(0); int gid = get_group_id(0); int id = get_global_id(0); DECLARE_LOCAL_MEM; DEFINE_ACCUMULATOR; for (int grain = groupnum * WGS; id < total; id += grain) { int src_index = mad24(id / cols, step, offset + (id % cols) * (int)sizeof(srcT)); __global const srcT * src = (__global const srcT *)(srcptr + src_index); REDUCE_GLOBAL; } if (lid < WGS2_ALIGNED) { SET_LOCAL_1; } barrier(CLK_LOCAL_MEM_FENCE); if (lid >= WGS2_ALIGNED && total >= WGS2_ALIGNED) { REDUCE_LOCAL_1; } barrier(CLK_LOCAL_MEM_FENCE); for (int lsize = WGS2_ALIGNED >> 1; lsize > 0; lsize >>= 1) { if (lid < lsize) { int lid2 = lsize + lid; REDUCE_LOCAL_2; } barrier(CLK_LOCAL_MEM_FENCE); } if (lid == 0) { CALC_RESULT; } }