/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include "opencv2/core/opengl_interop.hpp" #include "opencv2/core/gpumat.hpp" #ifdef HAVE_OPENGL #ifdef __APPLE__ #include #include #else #include #include #endif #ifdef HAVE_CUDA #include #include #endif #endif using namespace std; using namespace cv; using namespace cv::gpu; #ifndef HAVE_OPENGL #define throw_nogl CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support") #define throw_nocuda CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support") #else #define throw_nogl CV_Error(CV_OpenGlNotSupported, "OpenGL context doesn't exist") #ifndef HAVE_CUDA #define throw_nocuda CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support") #else #if defined(__GNUC__) #define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__) #else /* defined(__CUDACC__) || defined(__MSVC__) */ #define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__) #endif namespace { inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "") { if (cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), file, line, func); } } #endif // HAVE_CUDA #endif namespace { class EmptyGlFuncTab : public CvOpenGlFuncTab { public: void genBuffers(int, unsigned int*) const { throw_nogl; } void deleteBuffers(int, const unsigned int*) const { throw_nogl; } void bufferData(unsigned int, ptrdiff_t, const void*, unsigned int) const { throw_nogl; } void bufferSubData(unsigned int, ptrdiff_t, ptrdiff_t, const void*) const { throw_nogl; } void bindBuffer(unsigned int, unsigned int) const { throw_nogl; } void* mapBuffer(unsigned int, unsigned int) const { throw_nogl; return 0; } void unmapBuffer(unsigned int) const { throw_nogl; } void generateBitmapFont(const std::string&, int, int, bool, bool, int, int, int) const { throw_nogl; } bool isGlContextInitialized() const { return false; } }; const CvOpenGlFuncTab* g_glFuncTab = 0; const CvOpenGlFuncTab* glFuncTab() { static EmptyGlFuncTab empty; return g_glFuncTab ? g_glFuncTab : ∅ } } CvOpenGlFuncTab::~CvOpenGlFuncTab() { if (g_glFuncTab == this) g_glFuncTab = 0; } void icvSetOpenGlFuncTab(const CvOpenGlFuncTab* tab) { g_glFuncTab = tab; } #ifdef HAVE_OPENGL #ifndef GL_DYNAMIC_DRAW #define GL_DYNAMIC_DRAW 0x88E8 #endif #ifndef GL_READ_WRITE #define GL_READ_WRITE 0x88BA #endif #ifndef GL_BGR #define GL_BGR 0x80E0 #endif #ifndef GL_BGRA #define GL_BGRA 0x80E1 #endif namespace { const GLenum gl_types[] = {GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE}; #ifdef HAVE_CUDA bool g_isCudaGlDeviceInitialized = false; #endif } #endif // HAVE_OPENGL void cv::gpu::setGlDevice(int device) { #ifndef HAVE_CUDA throw_nocuda; #else #ifndef HAVE_OPENGL throw_nogl; #else if (!glFuncTab()->isGlContextInitialized()) throw_nogl; cudaSafeCall( cudaGLSetGLDevice(device) ); g_isCudaGlDeviceInitialized = true; #endif #endif } //////////////////////////////////////////////////////////////////////// // CudaGlInterop #if defined HAVE_CUDA && defined HAVE_OPENGL namespace { class CudaGlInterop { public: CudaGlInterop(); ~CudaGlInterop(); void registerBuffer(unsigned int buffer); void copyFrom(const GpuMat& mat, cudaStream_t stream = 0); GpuMat map(int rows, int cols, int type, cudaStream_t stream = 0); void unmap(cudaStream_t stream = 0); private: cudaGraphicsResource_t resource_; }; inline CudaGlInterop::CudaGlInterop() : resource_(0) { } CudaGlInterop::~CudaGlInterop() { if (resource_) { cudaGraphicsUnregisterResource(resource_); resource_ = 0; } } void CudaGlInterop::registerBuffer(unsigned int buffer) { if (!g_isCudaGlDeviceInitialized) cvError(CV_GpuApiCallError, "registerBuffer", "cuda GL device wasn't initialized, call setGlDevice", __FILE__, __LINE__); cudaGraphicsResource_t resource; cudaSafeCall( cudaGraphicsGLRegisterBuffer(&resource, buffer, cudaGraphicsMapFlagsNone) ); resource_ = resource; } void CudaGlInterop::copyFrom(const GpuMat& mat, cudaStream_t stream) { CV_Assert(resource_ != 0); cudaSafeCall( cudaGraphicsMapResources(1, &resource_, stream) ); void* dst_ptr; size_t num_bytes; cudaSafeCall( cudaGraphicsResourceGetMappedPointer(&dst_ptr, &num_bytes, resource_) ); const void* src_ptr = mat.ptr(); size_t widthBytes = mat.cols * mat.elemSize(); CV_Assert(widthBytes * mat.rows <= num_bytes); if (stream == 0) cudaSafeCall( cudaMemcpy2D(dst_ptr, widthBytes, src_ptr, mat.step, widthBytes, mat.rows, cudaMemcpyDeviceToDevice) ); else cudaSafeCall( cudaMemcpy2DAsync(dst_ptr, widthBytes, src_ptr, mat.step, widthBytes, mat.rows, cudaMemcpyDeviceToDevice, stream) ); cudaGraphicsUnmapResources(1, &resource_, stream); } GpuMat CudaGlInterop::map(int rows, int cols, int type, cudaStream_t stream) { CV_Assert(resource_ != 0); cudaSafeCall( cudaGraphicsMapResources(1, &resource_, stream) ); void* ptr; size_t num_bytes; cudaSafeCall( cudaGraphicsResourceGetMappedPointer(&ptr, &num_bytes, resource_) ); CV_Assert( static_cast(cols) * CV_ELEM_SIZE(type) * rows <= num_bytes ); return GpuMat(rows, cols, type, ptr); } inline void CudaGlInterop::unmap(cudaStream_t stream) { cudaGraphicsUnmapResources(1, &resource_, stream); } } #endif // HAVE_CUDA && HAVE_OPENGL //////////////////////////////////////////////////////////////////////// // GlBuffer #ifndef HAVE_OPENGL class cv::GlBuffer::Impl { }; #else class cv::GlBuffer::Impl { public: static const Ptr& empty(); Impl(int rows, int cols, int type, unsigned int target); Impl(const Mat& m, unsigned int target); ~Impl(); void copyFrom(const Mat& m, unsigned int target); #ifdef HAVE_CUDA void copyFrom(const GpuMat& mat, cudaStream_t stream = 0); #endif void bind(unsigned int target) const; void unbind(unsigned int target) const; Mat mapHost(int rows, int cols, int type, unsigned int target); void unmapHost(unsigned int target); #ifdef HAVE_CUDA GpuMat mapDevice(int rows, int cols, int type, cudaStream_t stream = 0); void unmapDevice(cudaStream_t stream = 0); #endif private: Impl(); unsigned int buffer_; #ifdef HAVE_CUDA CudaGlInterop cudaGlInterop_; #endif }; inline const Ptr& cv::GlBuffer::Impl::empty() { static Ptr p(new Impl); return p; } inline cv::GlBuffer::Impl::Impl() : buffer_(0) { } cv::GlBuffer::Impl::Impl(int rows, int cols, int type, unsigned int target) : buffer_(0) { if (!glFuncTab()->isGlContextInitialized()) throw_nogl; CV_DbgAssert(rows > 0 && cols > 0); CV_DbgAssert(CV_MAT_DEPTH(type) >= 0 && CV_MAT_DEPTH(type) <= CV_64F); glFuncTab()->genBuffers(1, &buffer_); CV_CheckGlError(); CV_Assert(buffer_ != 0); size_t size = rows * cols * CV_ELEM_SIZE(type); glFuncTab()->bindBuffer(target, buffer_); CV_CheckGlError(); glFuncTab()->bufferData(target, size, 0, GL_DYNAMIC_DRAW); CV_CheckGlError(); glFuncTab()->bindBuffer(target, 0); #ifdef HAVE_CUDA if (g_isCudaGlDeviceInitialized) cudaGlInterop_.registerBuffer(buffer_); #endif } cv::GlBuffer::Impl::Impl(const Mat& m, unsigned int target) : buffer_(0) { if (!glFuncTab()->isGlContextInitialized()) throw_nogl; CV_DbgAssert(m.rows > 0 && m.cols > 0); CV_DbgAssert(m.depth() >= 0 && m.depth() <= CV_64F); CV_Assert(m.isContinuous()); glFuncTab()->genBuffers(1, &buffer_); CV_CheckGlError(); CV_Assert(buffer_ != 0); size_t size = m.rows * m.cols * m.elemSize(); glFuncTab()->bindBuffer(target, buffer_); CV_CheckGlError(); glFuncTab()->bufferData(target, size, m.data, GL_DYNAMIC_DRAW); CV_CheckGlError(); glFuncTab()->bindBuffer(target, 0); #ifdef HAVE_CUDA if (g_isCudaGlDeviceInitialized) cudaGlInterop_.registerBuffer(buffer_); #endif } cv::GlBuffer::Impl::~Impl() { try { if (buffer_) glFuncTab()->deleteBuffers(1, &buffer_); } #ifdef _DEBUG catch(const exception& e) { cerr << e.what() << endl; } #endif catch(...) { } } void cv::GlBuffer::Impl::copyFrom(const Mat& m, unsigned int target) { CV_Assert(buffer_ != 0); CV_Assert(m.isContinuous()); bind(target); size_t size = m.rows * m.cols * m.elemSize(); glFuncTab()->bufferSubData(target, 0, size, m.data); CV_CheckGlError(); unbind(target); } #ifdef HAVE_CUDA void cv::GlBuffer::Impl::copyFrom(const GpuMat& mat, cudaStream_t stream) { if (!g_isCudaGlDeviceInitialized) cvError(CV_GpuApiCallError, "copyFrom", "cuda GL device wasn't initialized, call setGlDevice", __FILE__, __LINE__); CV_Assert(buffer_ != 0); cudaGlInterop_.copyFrom(mat, stream); } #endif // HAVE_CUDA inline void cv::GlBuffer::Impl::bind(unsigned int target) const { CV_Assert(buffer_ != 0); glFuncTab()->bindBuffer(target, buffer_); CV_CheckGlError(); } inline void cv::GlBuffer::Impl::unbind(unsigned int target) const { glFuncTab()->bindBuffer(target, 0); } inline Mat cv::GlBuffer::Impl::mapHost(int rows, int cols, int type, unsigned int target) { void* ptr = glFuncTab()->mapBuffer(target, GL_READ_WRITE); CV_CheckGlError(); return Mat(rows, cols, type, ptr); } inline void cv::GlBuffer::Impl::unmapHost(unsigned int target) { glFuncTab()->unmapBuffer(target); } #ifdef HAVE_CUDA inline GpuMat cv::GlBuffer::Impl::mapDevice(int rows, int cols, int type, cudaStream_t stream) { if (!g_isCudaGlDeviceInitialized) cvError(CV_GpuApiCallError, "copyFrom", "cuda GL device wasn't initialized, call setGlDevice", __FILE__, __LINE__); CV_Assert(buffer_ != 0); return cudaGlInterop_.map(rows, cols, type, stream); } inline void cv::GlBuffer::Impl::unmapDevice(cudaStream_t stream) { if (!g_isCudaGlDeviceInitialized) cvError(CV_GpuApiCallError, "copyFrom", "cuda GL device wasn't initialized, call setGlDevice", __FILE__, __LINE__); cudaGlInterop_.unmap(stream); } #endif // HAVE_CUDA #endif // HAVE_OPENGL cv::GlBuffer::GlBuffer(Usage usage) : rows_(0), cols_(0), type_(0), usage_(usage) { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = Impl::empty(); #endif } cv::GlBuffer::GlBuffer(int rows, int cols, int type, Usage usage) : rows_(0), cols_(0), type_(0), usage_(usage) { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = new Impl(rows, cols, type, usage); rows_ = rows; cols_ = cols; type_ = type; #endif } cv::GlBuffer::GlBuffer(Size size, int type, Usage usage) : rows_(0), cols_(0), type_(0), usage_(usage) { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = new Impl(size.height, size.width, type, usage); rows_ = size.height; cols_ = size.width; type_ = type; #endif } cv::GlBuffer::GlBuffer(InputArray mat_, Usage usage) : rows_(0), cols_(0), type_(0), usage_(usage) { #ifndef HAVE_OPENGL throw_nogl; #else int kind = mat_.kind(); Size size = mat_.size(); int type = mat_.type(); if (kind == _InputArray::GPU_MAT) { #ifndef HAVE_CUDA throw_nocuda; #else GpuMat d_mat = mat_.getGpuMat(); impl_ = new Impl(d_mat.rows, d_mat.cols, d_mat.type(), usage); impl_->copyFrom(d_mat); #endif } else { Mat mat = mat_.getMat(); impl_ = new Impl(mat, usage); } rows_ = size.height; cols_ = size.width; type_ = type; #endif } void cv::GlBuffer::create(int rows, int cols, int type, Usage usage) { #ifndef HAVE_OPENGL throw_nogl; #else if (rows_ != rows || cols_ != cols || type_ != type || usage_ != usage) { impl_ = new Impl(rows, cols, type, usage); rows_ = rows; cols_ = cols; type_ = type; usage_ = usage; } #endif } void cv::GlBuffer::release() { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = Impl::empty(); #endif } void cv::GlBuffer::copyFrom(InputArray mat_) { #ifndef HAVE_OPENGL throw_nogl; #else int kind = mat_.kind(); Size size = mat_.size(); int type = mat_.type(); create(size, type); switch (kind) { case _InputArray::OPENGL_BUFFER: { GlBuffer buf = mat_.getGlBuffer(); *this = buf; break; } case _InputArray::GPU_MAT: { #ifndef HAVE_CUDA throw_nocuda; #else GpuMat d_mat = mat_.getGpuMat(); impl_->copyFrom(d_mat); #endif break; } default: { Mat mat = mat_.getMat(); impl_->copyFrom(mat, usage_); } } #endif } void cv::GlBuffer::bind() const { #ifndef HAVE_OPENGL throw_nogl; #else impl_->bind(usage_); #endif } void cv::GlBuffer::unbind() const { #ifndef HAVE_OPENGL throw_nogl; #else impl_->unbind(usage_); #endif } Mat cv::GlBuffer::mapHost() { #ifndef HAVE_OPENGL throw_nogl; return Mat(); #else return impl_->mapHost(rows_, cols_, type_, usage_); #endif } void cv::GlBuffer::unmapHost() { #ifndef HAVE_OPENGL throw_nogl; #else impl_->unmapHost(usage_); #endif } GpuMat cv::GlBuffer::mapDevice() { #ifndef HAVE_OPENGL throw_nogl; return GpuMat(); #else #ifndef HAVE_CUDA throw_nocuda; return GpuMat(); #else return impl_->mapDevice(rows_, cols_, type_); #endif #endif } void cv::GlBuffer::unmapDevice() { #ifndef HAVE_OPENGL throw_nogl; #else #ifndef HAVE_CUDA throw_nocuda; #else impl_->unmapDevice(); #endif #endif } template <> void cv::Ptr::delete_obj() { if (obj) delete obj; } ////////////////////////////////////////////////////////////////////////////////////////// // GlTexture #ifndef HAVE_OPENGL class cv::GlTexture::Impl { }; #else class cv::GlTexture::Impl { public: static const Ptr empty(); Impl(int rows, int cols, int type); Impl(const Mat& mat, bool bgra); Impl(const GlBuffer& buf, bool bgra); ~Impl(); void copyFrom(const Mat& mat, bool bgra); void copyFrom(const GlBuffer& buf, bool bgra); void bind() const; void unbind() const; private: Impl(); GLuint tex_; }; inline const Ptr cv::GlTexture::Impl::empty() { static Ptr p(new Impl); return p; } inline cv::GlTexture::Impl::Impl() : tex_(0) { } cv::GlTexture::Impl::Impl(int rows, int cols, int type) : tex_(0) { if (!glFuncTab()->isGlContextInitialized()) throw_nogl; int depth = CV_MAT_DEPTH(type); int cn = CV_MAT_CN(type); CV_DbgAssert(rows > 0 && cols > 0); CV_Assert(cn == 1 || cn == 3 || cn == 4); CV_Assert(depth >= 0 && depth <= CV_32F); glGenTextures(1, &tex_); CV_CheckGlError(); CV_Assert(tex_ != 0); glBindTexture(GL_TEXTURE_2D, tex_); CV_CheckGlError(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); CV_CheckGlError(); GLenum format = cn == 1 ? GL_LUMINANCE : cn == 3 ? GL_BGR : GL_BGRA; glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CV_CheckGlError(); glTexImage2D(GL_TEXTURE_2D, 0, cn, cols, rows, 0, format, gl_types[depth], 0); CV_CheckGlError(); } cv::GlTexture::Impl::Impl(const Mat& mat, bool bgra) : tex_(0) { if (!glFuncTab()->isGlContextInitialized()) throw_nogl; int depth = mat.depth(); int cn = mat.channels(); CV_DbgAssert(mat.rows > 0 && mat.cols > 0); CV_Assert(cn == 1 || cn == 3 || cn == 4); CV_Assert(depth >= 0 && depth <= CV_32F); CV_Assert(mat.isContinuous()); glGenTextures(1, &tex_); CV_CheckGlError(); CV_Assert(tex_ != 0); glBindTexture(GL_TEXTURE_2D, tex_); CV_CheckGlError(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); CV_CheckGlError(); GLenum format = cn == 1 ? GL_LUMINANCE : (cn == 3 ? (bgra ? GL_BGR : GL_RGB) : (bgra ? GL_BGRA : GL_RGBA)); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CV_CheckGlError(); glTexImage2D(GL_TEXTURE_2D, 0, cn, mat.cols, mat.rows, 0, format, gl_types[depth], mat.data); CV_CheckGlError(); } cv::GlTexture::Impl::Impl(const GlBuffer& buf, bool bgra) : tex_(0) { if (!glFuncTab()->isGlContextInitialized()) throw_nogl; int depth = buf.depth(); int cn = buf.channels(); CV_DbgAssert(buf.rows() > 0 && buf.cols() > 0); CV_Assert(cn == 1 || cn == 3 || cn == 4); CV_Assert(depth >= 0 && depth <= CV_32F); CV_Assert(buf.usage() == GlBuffer::TEXTURE_BUFFER); glGenTextures(1, &tex_); CV_CheckGlError(); CV_Assert(tex_ != 0); glBindTexture(GL_TEXTURE_2D, tex_); CV_CheckGlError(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); CV_CheckGlError(); GLenum format = cn == 1 ? GL_LUMINANCE : (cn == 3 ? (bgra ? GL_BGR : GL_RGB) : (bgra ? GL_BGRA : GL_RGBA)); buf.bind(); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CV_CheckGlError(); glTexImage2D(GL_TEXTURE_2D, 0, cn, buf.cols(), buf.rows(), 0, format, gl_types[depth], 0); CV_CheckGlError(); buf.unbind(); } inline cv::GlTexture::Impl::~Impl() { if (tex_) glDeleteTextures(1, &tex_); } void cv::GlTexture::Impl::copyFrom(const Mat& mat, bool bgra) { CV_Assert(tex_ != 0); bind(); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CV_CheckGlError(); int cn = mat.channels(); GLenum format = cn == 1 ? GL_LUMINANCE : (cn == 3 ? (bgra ? GL_BGR : GL_RGB) : (bgra ? GL_BGRA : GL_RGBA)); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, mat.cols, mat.rows, format, gl_types[mat.depth()], mat.data); CV_CheckGlError(); unbind(); } void cv::GlTexture::Impl::copyFrom(const GlBuffer& buf, bool bgra) { CV_Assert(tex_ != 0); CV_Assert(buf.usage() == GlBuffer::TEXTURE_BUFFER); bind(); buf.bind(); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); CV_CheckGlError(); int cn = buf.channels(); GLenum format = cn == 1 ? GL_LUMINANCE : (cn == 3 ? (bgra ? GL_BGR : GL_RGB) : (bgra ? GL_BGRA : GL_RGBA)); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, buf.cols(), buf.rows(), format, gl_types[buf.depth()], 0); CV_CheckGlError(); buf.unbind(); unbind(); } inline void cv::GlTexture::Impl::bind() const { CV_Assert(tex_ != 0); glEnable(GL_TEXTURE_2D); CV_CheckGlError(); glBindTexture(GL_TEXTURE_2D, tex_); CV_CheckGlError(); } inline void cv::GlTexture::Impl::unbind() const { glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); } #endif // HAVE_OPENGL cv::GlTexture::GlTexture() : rows_(0), cols_(0), type_(0) { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = Impl::empty(); #endif } cv::GlTexture::GlTexture(int rows, int cols, int type) : rows_(0), cols_(0), type_(0) { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = new Impl(rows, cols, type); rows_ = rows; cols_ = cols; type_ = type; #endif } cv::GlTexture::GlTexture(Size size, int type) : rows_(0), cols_(0), type_(0) { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = new Impl(size.height, size.width, type); rows_ = size.height; cols_ = size.width; type_ = type; #endif } cv::GlTexture::GlTexture(InputArray mat_, bool bgra) : rows_(0), cols_(0), type_(0) { #ifndef HAVE_OPENGL throw_nogl; #else int kind = mat_.kind(); Size size = mat_.size(); int type = mat_.type(); switch (kind) { case _InputArray::OPENGL_BUFFER: { GlBuffer buf = mat_.getGlBuffer(); impl_ = new Impl(buf, bgra); break; } case _InputArray::GPU_MAT: { #ifndef HAVE_CUDA throw_nocuda; #else GpuMat d_mat = mat_.getGpuMat(); GlBuffer buf(d_mat, GlBuffer::TEXTURE_BUFFER); impl_ = new Impl(buf, bgra); #endif break; } default: { Mat mat = mat_.getMat(); impl_ = new Impl(mat, bgra); break; } } rows_ = size.height; cols_ = size.width; type_ = type; #endif } void cv::GlTexture::create(int rows, int cols, int type) { #ifndef HAVE_OPENGL throw_nogl; #else if (rows_ != rows || cols_ != cols || type_ != type) { impl_ = new Impl(rows, cols, type); rows_ = rows; cols_ = cols; type_ = type; } #endif } void cv::GlTexture::release() { #ifndef HAVE_OPENGL throw_nogl; #else impl_ = Impl::empty(); #endif } void cv::GlTexture::copyFrom(InputArray mat_, bool bgra) { #ifndef HAVE_OPENGL throw_nogl; #else int kind = mat_.kind(); Size size = mat_.size(); int type = mat_.type(); create(size, type); switch(kind) { case _InputArray::OPENGL_TEXTURE: { GlTexture tex = mat_.getGlTexture(); *this = tex; break; } case _InputArray::OPENGL_BUFFER: { GlBuffer buf = mat_.getGlBuffer(); impl_->copyFrom(buf, bgra); break; } case _InputArray::GPU_MAT: { #ifndef HAVE_CUDA throw_nocuda; #else GpuMat d_mat = mat_.getGpuMat(); GlBuffer buf(d_mat, GlBuffer::TEXTURE_BUFFER); impl_->copyFrom(buf, bgra); #endif break; } default: { Mat mat = mat_.getMat(); impl_->copyFrom(mat, bgra); } } #endif } void cv::GlTexture::bind() const { #ifndef HAVE_OPENGL throw_nogl; #else impl_->bind(); #endif } void cv::GlTexture::unbind() const { #ifndef HAVE_OPENGL throw_nogl; #else impl_->unbind(); #endif } template <> void cv::Ptr::delete_obj() { if (obj) delete obj; } //////////////////////////////////////////////////////////////////////// // GlArrays void cv::GlArrays::setVertexArray(InputArray vertex) { int cn = vertex.channels(); int depth = vertex.depth(); CV_Assert(cn == 2 || cn == 3 || cn == 4); CV_Assert(depth == CV_16S || depth == CV_32S || depth == CV_32F || depth == CV_64F); vertex_.copyFrom(vertex); } void cv::GlArrays::setColorArray(InputArray color, bool bgra) { int cn = color.channels(); CV_Assert((cn == 3 && !bgra) || cn == 4); color_.copyFrom(color); bgra_ = bgra; } void cv::GlArrays::setNormalArray(InputArray normal) { int cn = normal.channels(); int depth = normal.depth(); CV_Assert(cn == 3); CV_Assert(depth == CV_8S || depth == CV_16S || depth == CV_32S || depth == CV_32F || depth == CV_64F); normal_.copyFrom(normal); } void cv::GlArrays::setTexCoordArray(InputArray texCoord) { int cn = texCoord.channels(); int depth = texCoord.depth(); CV_Assert(cn >= 1 && cn <= 4); CV_Assert(depth == CV_16S || depth == CV_32S || depth == CV_32F || depth == CV_64F); texCoord_.copyFrom(texCoord); } void cv::GlArrays::bind() const { #ifndef HAVE_OPENGL throw_nogl; #else CV_DbgAssert(texCoord_.empty() || texCoord_.size().area() == vertex_.size().area()); CV_DbgAssert(normal_.empty() || normal_.size().area() == vertex_.size().area()); CV_DbgAssert(color_.empty() || color_.size().area() == vertex_.size().area()); if (!texCoord_.empty()) { glEnableClientState(GL_TEXTURE_COORD_ARRAY); CV_CheckGlError(); texCoord_.bind(); glTexCoordPointer(texCoord_.channels(), gl_types[texCoord_.depth()], 0, 0); CV_CheckGlError(); texCoord_.unbind(); } if (!normal_.empty()) { glEnableClientState(GL_NORMAL_ARRAY); CV_CheckGlError(); normal_.bind(); glNormalPointer(gl_types[normal_.depth()], 0, 0); CV_CheckGlError(); normal_.unbind(); } if (!color_.empty()) { glEnableClientState(GL_COLOR_ARRAY); CV_CheckGlError(); color_.bind(); int cn = color_.channels(); int format = cn == 3 ? cn : (bgra_ ? GL_BGRA : 4); glColorPointer(format, gl_types[color_.depth()], 0, 0); CV_CheckGlError(); color_.unbind(); } if (!vertex_.empty()) { glEnableClientState(GL_VERTEX_ARRAY); CV_CheckGlError(); vertex_.bind(); glVertexPointer(vertex_.channels(), gl_types[vertex_.depth()], 0, 0); CV_CheckGlError(); vertex_.unbind(); } #endif } void cv::GlArrays::unbind() const { #ifndef HAVE_OPENGL throw_nogl; #else if (!texCoord_.empty()) { glDisableClientState(GL_TEXTURE_COORD_ARRAY); CV_CheckGlError(); } if (!normal_.empty()) { glDisableClientState(GL_NORMAL_ARRAY); CV_CheckGlError(); } if (!color_.empty()) { glDisableClientState(GL_COLOR_ARRAY); CV_CheckGlError(); } if (!vertex_.empty()) { glDisableClientState(GL_VERTEX_ARRAY); CV_CheckGlError(); } #endif } //////////////////////////////////////////////////////////////////////// // GlFont cv::GlFont::GlFont(const string& family, int height, Weight weight, Style style) : family_(family), height_(height), weight_(weight), style_(style), base_(0) { #ifndef HAVE_OPENGL throw_nogl; #else base_ = glGenLists(256); CV_CheckGlError(); glFuncTab()->generateBitmapFont(family, height, weight, style & STYLE_ITALIC, style & STYLE_UNDERLINE, 0, 256, base_); #endif } void cv::GlFont::draw(const char* str, int len) const { #ifndef HAVE_OPENGL throw_nogl; #else if (base_ && len > 0) { glPushAttrib(GL_LIST_BIT); glListBase(base_); glCallLists(len, GL_UNSIGNED_BYTE, str); glPopAttrib(); CV_CheckGlError(); } #endif } namespace { class FontCompare : public unary_function, bool> { public: inline FontCompare(const string& family, int height, GlFont::Weight weight, GlFont::Style style) : family_(family), height_(height), weight_(weight), style_(style) { } bool operator ()(const cv::Ptr& font) { return font->family() == family_ && font->height() == height_ && font->weight() == weight_ && font->style() == style_; } private: string family_; int height_; GlFont::Weight weight_; GlFont::Style style_; }; } Ptr cv::GlFont::get(const std::string& family, int height, Weight weight, Style style) { #ifndef HAVE_OPENGL throw_nogl; return Ptr(); #else static vector< Ptr > fonts; fonts.reserve(10); vector< Ptr >::iterator fontIt = find_if(fonts.begin(), fonts.end(), FontCompare(family, height, weight, style)); if (fontIt == fonts.end()) { fonts.push_back(new GlFont(family, height, weight, style)); fontIt = fonts.end() - 1; } return *fontIt; #endif } //////////////////////////////////////////////////////////////////////// // Rendering void cv::render(const GlTexture& tex, Rect_ wndRect, Rect_ texRect) { #ifndef HAVE_OPENGL throw_nogl; #else if (!tex.empty()) { tex.bind(); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glBegin(GL_QUADS); glTexCoord2d(texRect.x, texRect.y); glVertex2d(wndRect.x, wndRect.y); glTexCoord2d(texRect.x, texRect.y + texRect.height); glVertex2d(wndRect.x, (wndRect.y + wndRect.height)); glTexCoord2d(texRect.x + texRect.width, texRect.y + texRect.height); glVertex2d(wndRect.x + wndRect.width, (wndRect.y + wndRect.height)); glTexCoord2d(texRect.x + texRect.width, texRect.y); glVertex2d(wndRect.x + wndRect.width, wndRect.y); glEnd(); CV_CheckGlError(); tex.unbind(); } #endif } void cv::render(const GlArrays& arr, int mode) { #ifndef HAVE_OPENGL throw_nogl; #else arr.bind(); glDrawArrays(mode, 0, arr.size().area()); arr.unbind(); #endif } void cv::render(const string& str, const Ptr& font, Scalar color, Point2d pos) { #ifndef HAVE_OPENGL throw_nogl; #else glPushAttrib(GL_DEPTH_BUFFER_BIT); GLint viewport[4]; glGetIntegerv(GL_VIEWPORT, viewport); glDisable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glRasterPos2d(2.0 * (viewport[0] + pos.x) / viewport[2] - 1.0, 1.0 - 2.0 * (viewport[1] + pos.y + font->height()) / viewport[3]); glColor4dv(color.val); font->draw(str.c_str(), str.length()); glPopAttrib(); #endif } //////////////////////////////////////////////////////////////////////// // GlCamera cv::GlCamera::GlCamera() : eye_(0.0, 0.0, -5.0), center_(0.0, 0.0, 0.0), up_(0.0, 1.0, 0.0), pos_(0.0, 0.0, -5.0), yaw_(0.0), pitch_(0.0), roll_(0.0), useLookAtParams_(false), scale_(1.0, 1.0, 1.0), projectionMatrix_(), fov_(45.0), aspect_(0.0), left_(0.0), right_(1.0), bottom_(1.0), top_(0.0), zNear_(-1.0), zFar_(1.0), perspectiveProjection_(false) { } void cv::GlCamera::lookAt(Point3d eye, Point3d center, Point3d up) { eye_ = eye; center_ = center; up_ = up; useLookAtParams_ = true; } void cv::GlCamera::setCameraPos(Point3d pos, double yaw, double pitch, double roll) { pos_ = pos; yaw_ = yaw; pitch_ = pitch; roll_ = roll; useLookAtParams_ = false; } void cv::GlCamera::setScale(Point3d scale) { scale_ = scale; } void cv::GlCamera::setProjectionMatrix(const Mat& projectionMatrix, bool transpose) { CV_Assert(projectionMatrix.type() == CV_32F || projectionMatrix.type() == CV_64F); CV_Assert(projectionMatrix.cols == 4 && projectionMatrix.rows == 4); projectionMatrix_ = transpose ? projectionMatrix.t() : projectionMatrix; } void cv::GlCamera::setPerspectiveProjection(double fov, double aspect, double zNear, double zFar) { fov_ = fov; aspect_ = aspect; zNear_ = zNear; zFar_ = zFar; projectionMatrix_.release(); perspectiveProjection_ = true; } void cv::GlCamera::setOrthoProjection(double left, double right, double bottom, double top, double zNear, double zFar) { left_ = left; right_ = right; bottom_ = bottom; top_ = top; zNear_ = zNear; zFar_ = zFar; projectionMatrix_.release(); perspectiveProjection_ = false; } void cv::GlCamera::setupProjectionMatrix() const { #ifndef HAVE_OPENGL throw_nogl; #else glMatrixMode(GL_PROJECTION); glLoadIdentity(); if (projectionMatrix_.empty()) { if (perspectiveProjection_) gluPerspective(fov_, aspect_, zNear_, zFar_); else glOrtho(left_, right_, bottom_, top_, zNear_, zFar_); } else { if (projectionMatrix_.type() == CV_32F) glLoadMatrixf(projectionMatrix_.ptr()); else glLoadMatrixd(projectionMatrix_.ptr()); } CV_CheckGlError(); #endif } void cv::GlCamera::setupModelViewMatrix() const { #ifndef HAVE_OPENGL throw_nogl; #else glMatrixMode(GL_MODELVIEW); glLoadIdentity(); if (useLookAtParams_) gluLookAt(eye_.x, eye_.y, eye_.z, center_.x, center_.y, center_.z, up_.x, up_.y, up_.z); else { glRotated(-yaw_, 0.0, 1.0, 0.0); glRotated(-pitch_, 1.0, 0.0, 0.0); glRotated(-roll_, 0.0, 0.0, 1.0); glTranslated(-pos_.x, -pos_.y, -pos_.z); } glScaled(scale_.x, scale_.y, scale_.z); CV_CheckGlError(); #endif } //////////////////////////////////////////////////////////////////////// // Error handling bool icvCheckGlError(const char* file, const int line, const char* func) { #ifndef HAVE_OPENGL return true; #else GLenum err = glGetError(); if (err != GL_NO_ERROR) { const char* msg; switch (err) { case GL_INVALID_ENUM: msg = "An unacceptable value is specified for an enumerated argument"; break; case GL_INVALID_VALUE: msg = "A numeric argument is out of range"; break; case GL_INVALID_OPERATION: msg = "The specified operation is not allowed in the current state"; break; case GL_STACK_OVERFLOW: msg = "This command would cause a stack overflow"; break; case GL_STACK_UNDERFLOW: msg = "This command would cause a stack underflow"; break; case GL_OUT_OF_MEMORY: msg = "There is not enough memory left to execute the command"; break; default: msg = "Unknown error"; }; cvError(CV_OpenGlApiCallError, func, msg, file, line); return false; } return true; #endif }