// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "convert.simd.hpp" #include "convert.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content namespace cv { namespace hal { void cvt16f32f(const float16_t* src, float* dst, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(cvt16f32f, (src, dst, len), CV_CPU_DISPATCH_MODES_ALL); } void cvt32f16f(const float* src, float16_t* dst, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(cvt32f16f, (src, dst, len), CV_CPU_DISPATCH_MODES_ALL); } void addRNGBias32f(float* arr, const float* scaleBiasPairs, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(addRNGBias32f, (arr, scaleBiasPairs, len), CV_CPU_DISPATCH_MODES_ALL); } void addRNGBias64f(double* arr, const double* scaleBiasPairs, int len) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(addRNGBias64f, (arr, scaleBiasPairs, len), CV_CPU_DISPATCH_MODES_ALL); } } // namespace /* [TODO] Recover IPP calls #if defined(HAVE_IPP) #define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \ static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ dtype* dst, size_t dstep, Size size, double*) \ { \ CV_IPP_RUN(src && dst, CV_INSTRUMENT_FUN_IPP(ippiConvert_##ippFavor, src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height)) >= 0) \ cvt_(src, sstep, dst, dstep, size); \ } #define DEF_CVT_FUNC_F2(suffix, stype, dtype, ippFavor) \ static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ dtype* dst, size_t dstep, Size size, double*) \ { \ CV_IPP_RUN(src && dst, CV_INSTRUMENT_FUN_IPP(ippiConvert_##ippFavor, src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height), ippRndFinancial, 0) >= 0) \ cvt_(src, sstep, dst, dstep, size); \ } #else #define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \ static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ dtype* dst, size_t dstep, Size size, double*) \ { \ cvt_(src, sstep, dst, dstep, size); \ } #define DEF_CVT_FUNC_F2 DEF_CVT_FUNC_F #endif #define DEF_CVT_FUNC(suffix, stype, dtype) \ static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ dtype* dst, size_t dstep, Size size, double*) \ { \ cvt_(src, sstep, dst, dstep, size); \ } #define DEF_CPY_FUNC(suffix, stype) \ static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ stype* dst, size_t dstep, Size size, double*) \ { \ cpy_(src, sstep, dst, dstep, size); \ } DEF_CPY_FUNC(8u, uchar) DEF_CVT_FUNC_F(8s8u, schar, uchar, 8s8u_C1Rs) DEF_CVT_FUNC_F(16u8u, ushort, uchar, 16u8u_C1R) DEF_CVT_FUNC_F(16s8u, short, uchar, 16s8u_C1R) DEF_CVT_FUNC_F(32s8u, int, uchar, 32s8u_C1R) DEF_CVT_FUNC_F2(32f8u, float, uchar, 32f8u_C1RSfs) DEF_CVT_FUNC(64f8u, double, uchar) DEF_CVT_FUNC_F2(8u8s, uchar, schar, 8u8s_C1RSfs) DEF_CVT_FUNC_F2(16u8s, ushort, schar, 16u8s_C1RSfs) DEF_CVT_FUNC_F2(16s8s, short, schar, 16s8s_C1RSfs) DEF_CVT_FUNC_F(32s8s, int, schar, 32s8s_C1R) DEF_CVT_FUNC_F2(32f8s, float, schar, 32f8s_C1RSfs) DEF_CVT_FUNC(64f8s, double, schar) DEF_CVT_FUNC_F(8u16u, uchar, ushort, 8u16u_C1R) DEF_CVT_FUNC_F(8s16u, schar, ushort, 8s16u_C1Rs) DEF_CPY_FUNC(16u, ushort) DEF_CVT_FUNC_F(16s16u, short, ushort, 16s16u_C1Rs) DEF_CVT_FUNC_F2(32s16u, int, ushort, 32s16u_C1RSfs) DEF_CVT_FUNC_F2(32f16u, float, ushort, 32f16u_C1RSfs) DEF_CVT_FUNC(64f16u, double, ushort) DEF_CVT_FUNC_F(8u16s, uchar, short, 8u16s_C1R) DEF_CVT_FUNC_F(8s16s, schar, short, 8s16s_C1R) DEF_CVT_FUNC_F2(16u16s, ushort, short, 16u16s_C1RSfs) DEF_CVT_FUNC_F2(32s16s, int, short, 32s16s_C1RSfs) DEF_CVT_FUNC(32f16s, float, short) DEF_CVT_FUNC(64f16s, double, short) DEF_CVT_FUNC_F(8u32s, uchar, int, 8u32s_C1R) DEF_CVT_FUNC_F(8s32s, schar, int, 8s32s_C1R) DEF_CVT_FUNC_F(16u32s, ushort, int, 16u32s_C1R) DEF_CVT_FUNC_F(16s32s, short, int, 16s32s_C1R) DEF_CPY_FUNC(32s, int) DEF_CVT_FUNC_F2(32f32s, float, int, 32f32s_C1RSfs) DEF_CVT_FUNC(64f32s, double, int) DEF_CVT_FUNC_F(8u32f, uchar, float, 8u32f_C1R) DEF_CVT_FUNC_F(8s32f, schar, float, 8s32f_C1R) DEF_CVT_FUNC_F(16u32f, ushort, float, 16u32f_C1R) DEF_CVT_FUNC_F(16s32f, short, float, 16s32f_C1R) DEF_CVT_FUNC_F(32s32f, int, float, 32s32f_C1R) DEF_CVT_FUNC(64f32f, double, float) DEF_CVT_FUNC(8u64f, uchar, double) DEF_CVT_FUNC(8s64f, schar, double) DEF_CVT_FUNC(16u64f, ushort, double) DEF_CVT_FUNC(16s64f, short, double) DEF_CVT_FUNC(32s64f, int, double) DEF_CVT_FUNC(32f64f, float, double) DEF_CPY_FUNC(64s, int64) */ BinaryFunc getConvertFunc(int sdepth, int ddepth) { CV_INSTRUMENT_REGION(); CV_CPU_DISPATCH(getConvertFunc, (sdepth, ddepth), CV_CPU_DISPATCH_MODES_ALL); } #ifdef HAVE_OPENCL static bool ocl_convertFp16( InputArray _src, OutputArray _dst, int sdepth, int ddepth ) { int type = _src.type(), cn = CV_MAT_CN(type); _dst.createSameSize( _src, CV_MAKETYPE(ddepth, cn) ); int kercn = 1; int rowsPerWI = 1; String build_opt = format("-D HALF_SUPPORT -D srcT=%s -D dstT=%s -D rowsPerWI=%d%s", sdepth == CV_32F ? "float" : "half", sdepth == CV_32F ? "half" : "float", rowsPerWI, sdepth == CV_32F ? " -D FLOAT_TO_HALF " : ""); ocl::Kernel k(sdepth == CV_32F ? "convertFp16_FP32_to_FP16" : "convertFp16_FP16_to_FP32", ocl::core::halfconvert_oclsrc, build_opt); if (k.empty()) return false; UMat src = _src.getUMat(); UMat dst = _dst.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); k.args(srcarg, dstarg); size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } static bool ocl_convertTo(InputArray src_, OutputArray dst_, int ddepth, bool noScale, double alpha, double beta) { CV_INSTRUMENT_REGION(); CV_Assert(ddepth >= 0); int stype = src_.type(); int sdepth = CV_MAT_DEPTH(stype); int cn = CV_MAT_CN(stype); int dtype = CV_MAKETYPE(ddepth, cn); int wdepth = (sdepth == CV_64F) ? CV_64F : CV_32F; bool needDouble = sdepth == CV_64F || ddepth == CV_64F; bool doubleCheck = true; if (needDouble) { doubleCheck = ocl::Device::getDefault().hasFP64(); } bool halfCheck = true; bool needHalf = sdepth == CV_16F || ddepth == CV_16F; if (needHalf) { halfCheck = ocl::Device::getDefault().hasFP16(); } if (!doubleCheck) return false; if (!halfCheck) return false; const int rowsPerWI = 4; char cvt[2][50]; ocl::Kernel k("convertTo", ocl::core::convert_oclsrc, format("-D srcT=%s -D WT=%s -D dstT=%s -D convertToWT=%s -D convertToDT=%s -D rowsPerWI=%d%s%s%s", ocl::typeToStr(sdepth), ocl::typeToStr(wdepth), ocl::typeToStr(ddepth), ocl::convertTypeStr(sdepth, wdepth, 1, cvt[0], sizeof(cvt[0])), ocl::convertTypeStr(wdepth, ddepth, 1, cvt[1], sizeof(cvt[1])), rowsPerWI, needDouble ? " -D DOUBLE_SUPPORT" : "", needHalf ? " -D HALF_SUPPORT" : "", noScale ? " -D NO_SCALE" : "" ) ); if (k.empty()) return false; UMat src = src_.getUMat(); dst_.createSameSize(src_, dtype); UMat dst = dst_.getUMat(); float alphaf = (float)alpha, betaf = (float)beta; if (noScale) k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn)); else if (wdepth == CV_32F) k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf); else k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alpha, beta); size_t globalsize[2] = { (size_t)dst.cols * cn, divUp((size_t)dst.rows, rowsPerWI) }; if (!k.run(2, globalsize, NULL, false)) return false; CV_IMPL_ADD(CV_IMPL_OCL); return true; } #endif void Mat::convertTo(OutputArray dst, int type_, double alpha, double beta) const { CV_INSTRUMENT_REGION(); if (empty()) { dst.release(); return; } int stype = type(); int sdepth = CV_MAT_DEPTH(stype); int ddepth = sdepth; if (type_ >= 0) ddepth = CV_MAT_DEPTH(type_); else ddepth = dst.fixedType() ? dst.depth() : sdepth; bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON; if (sdepth == ddepth && noScale) { copyTo(dst); return; } CV_OCL_RUN(dims <= 2 && dst.isUMat(), ocl_convertTo(*this, dst, ddepth, noScale, alpha, beta)) int cn = channels(); int dtype = CV_MAKETYPE(ddepth, cn); Mat src = *this; dst.create(dims, size, dtype); Mat dstMat = dst.getMat(); BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth); double scale[] = {alpha, beta}; CV_Assert( func != 0 ); if( dims <= 2 ) { Size sz = getContinuousSize2D(src, dstMat, cn); func(src.data, src.step, 0, 0, dstMat.data, dstMat.step, sz, scale); } else { const Mat* arrays[] = {&src, &dstMat, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); Size sz((int)(it.size*cn), 1); for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, scale); } } void UMat::convertTo(OutputArray dst, int type_, double alpha, double beta) const { CV_INSTRUMENT_REGION(); if (empty()) { dst.release(); return; } #ifdef HAVE_OPENCL int stype = type(); int sdepth = CV_MAT_DEPTH(stype); int ddepth = sdepth; if (type_ >= 0) ddepth = CV_MAT_DEPTH(type_); else ddepth = dst.fixedType() ? dst.depth() : sdepth; bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON; if (sdepth == ddepth && noScale) { copyTo(dst); return; } CV_OCL_RUN(dims <= 2, ocl_convertTo(*this, dst, ddepth, noScale, alpha, beta)) #endif // HAVE_OPENCL UMat src = *this; // Fake reference to itself. // Resolves issue 8693 in case of src == dst. Mat m = getMat(ACCESS_READ); m.convertTo(dst, type_, alpha, beta); (void)src; } //================================================================================================== void convertFp16(InputArray _src, OutputArray _dst) { CV_INSTRUMENT_REGION(); int sdepth = _src.depth(), ddepth = 0; BinaryFunc func = 0; switch( sdepth ) { case CV_32F: if(_dst.fixedType()) { ddepth = _dst.depth(); CV_Assert(ddepth == CV_16S || ddepth == CV_16F); CV_Assert(_dst.channels() == _src.channels()); } else ddepth = CV_16S; func = getConvertFunc(CV_32F, CV_16F); break; case CV_16S: case CV_16F: ddepth = CV_32F; func = getConvertFunc(CV_16F, CV_32F); break; default: CV_Error(Error::StsUnsupportedFormat, "Unsupported input depth"); return; } CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_convertFp16(_src, _dst, sdepth, ddepth)) Mat src = _src.getMat(); int type = CV_MAKETYPE(ddepth, src.channels()); _dst.create( src.dims, src.size, type ); Mat dst = _dst.getMat(); int cn = src.channels(); CV_Assert( func != 0 ); if( src.dims <= 2 ) { Size sz = getContinuousSize2D(src, dst, cn); func( src.data, src.step, 0, 0, dst.data, dst.step, sz, 0); } else { const Mat* arrays[] = {&src, &dst, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); Size sz((int)(it.size*cn), 1); for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], 0, 0, 0, ptrs[1], 0, sz, 0); } } } // namespace cv