/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/videostab/global_motion.hpp" #include "opencv2/videostab/ring_buffer.hpp" #include "opencv2/videostab/outlier_rejection.hpp" #include "opencv2/opencv_modules.hpp" #include "clp.hpp" using namespace std; namespace cv { namespace videostab { // does isotropic normalization static Mat normalizePoints(int npoints, Point2f *points) { float cx = 0.f, cy = 0.f; for (int i = 0; i < npoints; ++i) { cx += points[i].x; cy += points[i].y; } cx /= npoints; cy /= npoints; float d = 0.f; for (int i = 0; i < npoints; ++i) { points[i].x -= cx; points[i].y -= cy; d += sqrt(sqr(points[i].x) + sqr(points[i].y)); } d /= npoints; float s = sqrt(2.f) / d; for (int i = 0; i < npoints; ++i) { points[i].x *= s; points[i].y *= s; } Mat_ T = Mat::eye(3, 3, CV_32F); T(0,0) = T(1,1) = s; T(0,2) = -cx*s; T(1,2) = -cy*s; return T; } static Mat estimateGlobMotionLeastSquaresTranslation( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ M = Mat::eye(3, 3, CV_32F); for (int i = 0; i < npoints; ++i) { M(0,2) += points1[i].x - points0[i].x; M(1,2) += points1[i].y - points0[i].y; } M(0,2) /= npoints; M(1,2) /= npoints; if (rmse) { *rmse = 0; for (int i = 0; i < npoints; ++i) *rmse += sqr(points1[i].x - points0[i].x - M(0,2)) + sqr(points1[i].y - points0[i].y - M(1,2)); *rmse = sqrt(*rmse / npoints); } return M; } static Mat estimateGlobMotionLeastSquaresTranslationAndScale( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ T0 = normalizePoints(npoints, points0); Mat_ T1 = normalizePoints(npoints, points1); Mat_ A(2*npoints, 3), b(2*npoints, 1); float *a0, *a1; Point2f p0, p1; for (int i = 0; i < npoints; ++i) { a0 = A[2*i]; a1 = A[2*i+1]; p0 = points0[i]; p1 = points1[i]; a0[0] = p0.x; a0[1] = 1; a0[2] = 0; a1[0] = p0.y; a1[1] = 0; a1[2] = 1; b(2*i,0) = p1.x; b(2*i+1,0) = p1.y; } Mat_ sol; solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU); if (rmse) *rmse = static_cast(norm(A*sol, b, NORM_L2) / sqrt(static_cast(npoints))); Mat_ M = Mat::eye(3, 3, CV_32F); M(0,0) = M(1,1) = sol(0,0); M(0,2) = sol(1,0); M(1,2) = sol(2,0); return T1.inv() * M * T0; } static Mat estimateGlobMotionLeastSquaresRigid( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Point2f mean0(0.f, 0.f); Point2f mean1(0.f, 0.f); for (int i = 0; i < npoints; ++i) { mean0 += points0[i]; mean1 += points1[i]; } mean0 *= 1.f / npoints; mean1 *= 1.f / npoints; Mat_ A = Mat::zeros(2, 2, CV_32F); Point2f pt0, pt1; for (int i = 0; i < npoints; ++i) { pt0 = points0[i] - mean0; pt1 = points1[i] - mean1; A(0,0) += pt1.x * pt0.x; A(0,1) += pt1.x * pt0.y; A(1,0) += pt1.y * pt0.x; A(1,1) += pt1.y * pt0.y; } Mat_ M = Mat::eye(3, 3, CV_32F); SVD svd(A); Mat_ R = svd.u * svd.vt; Mat tmp(M(Rect(0,0,2,2))); R.copyTo(tmp); M(0,2) = mean1.x - R(0,0)*mean0.x - R(0,1)*mean0.y; M(1,2) = mean1.y - R(1,0)*mean0.x - R(1,1)*mean0.y; if (rmse) { *rmse = 0; for (int i = 0; i < npoints; ++i) { pt0 = points0[i]; pt1 = points1[i]; *rmse += sqr(pt1.x - M(0,0)*pt0.x - M(0,1)*pt0.y - M(0,2)) + sqr(pt1.y - M(1,0)*pt0.x - M(1,1)*pt0.y - M(1,2)); } *rmse = sqrt(*rmse / npoints); } return M; } static Mat estimateGlobMotionLeastSquaresSimilarity( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ T0 = normalizePoints(npoints, points0); Mat_ T1 = normalizePoints(npoints, points1); Mat_ A(2*npoints, 4), b(2*npoints, 1); float *a0, *a1; Point2f p0, p1; for (int i = 0; i < npoints; ++i) { a0 = A[2*i]; a1 = A[2*i+1]; p0 = points0[i]; p1 = points1[i]; a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = 0; a1[0] = p0.y; a1[1] = -p0.x; a1[2] = 0; a1[3] = 1; b(2*i,0) = p1.x; b(2*i+1,0) = p1.y; } Mat_ sol; solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU); if (rmse) *rmse = static_cast(norm(A*sol, b, NORM_L2) / sqrt(static_cast(npoints))); Mat_ M = Mat::eye(3, 3, CV_32F); M(0,0) = M(1,1) = sol(0,0); M(0,1) = sol(1,0); M(1,0) = -sol(1,0); M(0,2) = sol(2,0); M(1,2) = sol(3,0); return T1.inv() * M * T0; } static Mat estimateGlobMotionLeastSquaresAffine( int npoints, Point2f *points0, Point2f *points1, float *rmse) { Mat_ T0 = normalizePoints(npoints, points0); Mat_ T1 = normalizePoints(npoints, points1); Mat_ A(2*npoints, 6), b(2*npoints, 1); float *a0, *a1; Point2f p0, p1; for (int i = 0; i < npoints; ++i) { a0 = A[2*i]; a1 = A[2*i+1]; p0 = points0[i]; p1 = points1[i]; a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = a0[4] = a0[5] = 0; a1[0] = a1[1] = a1[2] = 0; a1[3] = p0.x; a1[4] = p0.y; a1[5] = 1; b(2*i,0) = p1.x; b(2*i+1,0) = p1.y; } Mat_ sol; solve(A, b, sol, DECOMP_NORMAL | DECOMP_LU); if (rmse) *rmse = static_cast(norm(A*sol, b, NORM_L2) / sqrt(static_cast(npoints))); Mat_ M = Mat::eye(3, 3, CV_32F); for (int i = 0, k = 0; i < 2; ++i) for (int j = 0; j < 3; ++j, ++k) M(i,j) = sol(k,0); return T1.inv() * M * T0; } Mat estimateGlobalMotionLeastSquares( InputOutputArray points0, InputOutputArray points1, int model, float *rmse) { CV_Assert(model <= MM_AFFINE); CV_Assert(points0.type() == points1.type()); const int npoints = points0.getMat().checkVector(2); CV_Assert(points1.getMat().checkVector(2) == npoints); typedef Mat (*Impl)(int, Point2f*, Point2f*, float*); static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation, estimateGlobMotionLeastSquaresTranslationAndScale, estimateGlobMotionLeastSquaresRigid, estimateGlobMotionLeastSquaresSimilarity, estimateGlobMotionLeastSquaresAffine }; Point2f *points0_ = points0.getMat().ptr(); Point2f *points1_ = points1.getMat().ptr(); return impls[model](npoints, points0_, points1_, rmse); } Mat estimateGlobalMotionRansac( InputArray points0, InputArray points1, int model, const RansacParams ¶ms, float *rmse, int *ninliers) { CV_Assert(model <= MM_AFFINE); CV_Assert(points0.type() == points1.type()); const int npoints = points0.getMat().checkVector(2); CV_Assert(points1.getMat().checkVector(2) == npoints); const Point2f *points0_ = points0.getMat().ptr(); const Point2f *points1_ = points1.getMat().ptr(); const int niters = params.niters(); // current hypothesis vector indices(params.size); vector subset0(params.size); vector subset1(params.size); // best hypothesis vector subset0best(params.size); vector subset1best(params.size); Mat_ bestM; int ninliersMax = -1; RNG rng(0); Point2f p0, p1; float x, y; for (int iter = 0; iter < niters; ++iter) { for (int i = 0; i < params.size; ++i) { bool ok = false; while (!ok) { ok = true; indices[i] = static_cast(rng) % npoints; for (int j = 0; j < i; ++j) if (indices[i] == indices[j]) { ok = false; break; } } } for (int i = 0; i < params.size; ++i) { subset0[i] = points0_[indices[i]]; subset1[i] = points1_[indices[i]]; } Mat_ M = estimateGlobalMotionLeastSquares(subset0, subset1, model, 0); int numinliers = 0; for (int i = 0; i < npoints; ++i) { p0 = points0_[i]; p1 = points1_[i]; x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2); y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2); if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh) numinliers++; } if (numinliers >= ninliersMax) { bestM = M; ninliersMax = numinliers; subset0best.swap(subset0); subset1best.swap(subset1); } } if (ninliersMax < params.size) // compute RMSE bestM = estimateGlobalMotionLeastSquares(subset0best, subset1best, model, rmse); else { subset0.resize(ninliersMax); subset1.resize(ninliersMax); for (int i = 0, j = 0; i < npoints; ++i) { p0 = points0_[i]; p1 = points1_[i]; x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2); y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2); if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh) { subset0[j] = p0; subset1[j] = p1; j++; } } bestM = estimateGlobalMotionLeastSquares(subset0, subset1, model, rmse); } if (ninliers) *ninliers = ninliersMax; return bestM; } MotionEstimatorRansacL2::MotionEstimatorRansacL2(MotionModel model) : MotionEstimatorBase(model) { setRansacParams(RansacParams::default2dMotion(model)); setMinInlierRatio(0.1f); } Mat MotionEstimatorRansacL2::estimate(InputArray points0, InputArray points1, bool *ok) { CV_Assert(points0.type() == points1.type()); const int npoints = points0.getMat().checkVector(2); CV_Assert(points1.getMat().checkVector(2) == npoints); // find motion int ninliers = 0; Mat_ M; if (motionModel() != MM_HOMOGRAPHY) M = estimateGlobalMotionRansac( points0, points1, motionModel(), ransacParams_, 0, &ninliers); else { vector mask; M = findHomography(points0, points1, mask, CV_LMEDS); for (int i = 0; i < npoints; ++i) if (mask[i]) ninliers++; } // check if we're confident enough in estimated motion if (ok) *ok = true; if (static_cast(ninliers) / npoints < minInlierRatio_) { M = Mat::eye(3, 3, CV_32F); if (ok) *ok = false; } return M; } MotionEstimatorL1::MotionEstimatorL1(MotionModel model) : MotionEstimatorBase(model) { } // TODO will estimation of all motions as one LP problem be faster? Mat MotionEstimatorL1::estimate(InputArray points0, InputArray points1, bool *ok) { CV_Assert(points0.type() == points1.type()); const int npoints = points0.getMat().checkVector(2); CV_Assert(points1.getMat().checkVector(2) == npoints); #ifndef HAVE_CLP CV_Error(CV_StsError, "The library is built without Clp support"); if (ok) *ok = false; return Mat::eye(3, 3, CV_32F); #else CV_Assert(motionModel() <= MM_AFFINE && motionModel() != MM_RIGID); // prepare LP problem const Point2f *points0_ = points0.getMat().ptr(); const Point2f *points1_ = points1.getMat().ptr(); int ncols = 6 + 2*npoints; int nrows = 4*npoints; if (motionModel() == MM_SIMILARITY) nrows += 2; else if (motionModel() == MM_TRANSLATION_AND_SCALE) nrows += 3; else if (motionModel() == MM_TRANSLATION) nrows += 4; rows_.clear(); cols_.clear(); elems_.clear(); obj_.assign(ncols, 0); collb_.assign(ncols, -INF); colub_.assign(ncols, INF); int c = 6; for (int i = 0; i < npoints; ++i, c += 2) { obj_[c] = 1; collb_[c] = 0; obj_[c+1] = 1; collb_[c+1] = 0; } elems_.clear(); rowlb_.assign(nrows, -INF); rowub_.assign(nrows, INF); int r = 0; Point2f p0, p1; for (int i = 0; i < npoints; ++i, r += 4) { p0 = points0_[i]; p1 = points1_[i]; set(r, 0, p0.x); set(r, 1, p0.y); set(r, 2, 1); set(r, 6+2*i, -1); rowub_[r] = p1.x; set(r+1, 3, p0.x); set(r+1, 4, p0.y); set(r+1, 5, 1); set(r+1, 6+2*i+1, -1); rowub_[r+1] = p1.y; set(r+2, 0, p0.x); set(r+2, 1, p0.y); set(r+2, 2, 1); set(r+2, 6+2*i, 1); rowlb_[r+2] = p1.x; set(r+3, 3, p0.x); set(r+3, 4, p0.y); set(r+3, 5, 1); set(r+3, 6+2*i+1, 1); rowlb_[r+3] = p1.y; } if (motionModel() == MM_SIMILARITY) { set(r, 0, 1); set(r, 4, -1); rowlb_[r] = rowub_[r] = 0; set(r+1, 1, 1); set(r+1, 3, 1); rowlb_[r+1] = rowub_[r+1] = 0; } else if (motionModel() == MM_TRANSLATION_AND_SCALE) { set(r, 0, 1); set(r, 4, -1); rowlb_[r] = rowub_[r] = 0; set(r+1, 1, 1); rowlb_[r+1] = rowub_[r+1] = 0; set(r+2, 3, 1); rowlb_[r+2] = rowub_[r+2] = 0; } else if (motionModel() == MM_TRANSLATION) { set(r, 0, 1); rowlb_[r] = rowub_[r] = 1; set(r+1, 1, 1); rowlb_[r+1] = rowub_[r+1] = 0; set(r+2, 3, 1); rowlb_[r+2] = rowub_[r+2] = 0; set(r+3, 4, 1); rowlb_[r+3] = rowub_[r+3] = 1; } // solve CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size()); A.setDimensions(nrows, ncols); ClpSimplex model(false); model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]); ClpDualRowSteepest dualSteep(1); model.setDualRowPivotAlgorithm(dualSteep); model.scaling(1); model.dual(); // extract motion const double *sol = model.getColSolution(); Mat_ M = Mat::eye(3, 3, CV_32F); M(0,0) = sol[0]; M(0,1) = sol[1]; M(0,2) = sol[2]; M(1,0) = sol[3]; M(1,1) = sol[4]; M(1,2) = sol[5]; if (ok) *ok = true; return M; #endif } FromFileMotionReader::FromFileMotionReader(const string &path) : ImageMotionEstimatorBase(MM_UNKNOWN) { file_.open(path.c_str()); CV_Assert(file_.is_open()); } Mat FromFileMotionReader::estimate(const Mat &/*frame0*/, const Mat &/*frame1*/, bool *ok) { Mat_ M(3, 3); bool ok_; file_ >> M(0,0) >> M(0,1) >> M(0,2) >> M(1,0) >> M(1,1) >> M(1,2) >> M(2,0) >> M(2,1) >> M(2,2) >> ok_; if (ok) *ok = ok_; return M; } ToFileMotionWriter::ToFileMotionWriter(const string &path, Ptr estimator) : ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator) { file_.open(path.c_str()); CV_Assert(file_.is_open()); } Mat ToFileMotionWriter::estimate(const Mat &frame0, const Mat &frame1, bool *ok) { bool ok_; Mat_ M = motionEstimator_->estimate(frame0, frame1, &ok_); file_ << M(0,0) << " " << M(0,1) << " " << M(0,2) << " " << M(1,0) << " " << M(1,1) << " " << M(1,2) << " " << M(2,0) << " " << M(2,1) << " " << M(2,2) << " " << ok_ << endl; if (ok) *ok = ok_; return M; } KeypointBasedMotionEstimator::KeypointBasedMotionEstimator(Ptr estimator) : ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator) { setDetector(new GoodFeaturesToTrackDetector()); setOpticalFlowEstimator(new SparsePyrLkOptFlowEstimator()); setOutlierRejector(new NullOutlierRejector()); } Mat KeypointBasedMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, bool *ok) { // find keypoints detector_->detect(frame0, keypointsPrev_); // extract points from keypoints pointsPrev_.resize(keypointsPrev_.size()); for (size_t i = 0; i < keypointsPrev_.size(); ++i) pointsPrev_[i] = keypointsPrev_[i].pt; // find correspondences optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray()); // leave good correspondences only pointsPrevGood_.clear(); pointsPrevGood_.reserve(points_.size()); pointsGood_.clear(); pointsGood_.reserve(points_.size()); for (size_t i = 0; i < points_.size(); ++i) { if (status_[i]) { pointsPrevGood_.push_back(pointsPrev_[i]); pointsGood_.push_back(points_[i]); } } // perform outlier rejection IOutlierRejector *outlRejector = static_cast(outlierRejector_); if (!dynamic_cast(outlRejector)) { pointsPrev_.swap(pointsPrevGood_); points_.swap(pointsGood_); outlierRejector_->process(frame0.size(), pointsPrev_, points_, status_); pointsPrevGood_.clear(); pointsPrevGood_.reserve(points_.size()); pointsGood_.clear(); pointsGood_.reserve(points_.size()); for (size_t i = 0; i < points_.size(); ++i) { if (status_[i]) { pointsPrevGood_.push_back(pointsPrev_[i]); pointsGood_.push_back(points_[i]); } } } // estimate motion return motionEstimator_->estimate(pointsPrevGood_, pointsGood_, ok); } #ifdef HAVE_OPENCV_GPU KeypointBasedMotionEstimatorGpu::KeypointBasedMotionEstimatorGpu(Ptr estimator) : ImageMotionEstimatorBase(estimator->motionModel()), motionEstimator_(estimator) { CV_Assert(gpu::getCudaEnabledDeviceCount() > 0); setOutlierRejector(new NullOutlierRejector()); } Mat KeypointBasedMotionEstimatorGpu::estimate(const Mat &frame0, const Mat &frame1, bool *ok) { frame0_.upload(frame0); frame1_.upload(frame1); return estimate(frame0_, frame1_, ok); } Mat KeypointBasedMotionEstimatorGpu::estimate(const gpu::GpuMat &frame0, const gpu::GpuMat &frame1, bool *ok) { // convert frame to gray if it's color gpu::GpuMat grayFrame0; if (frame0.channels() == 1) grayFrame0 = frame0; else { gpu::cvtColor(frame0_, grayFrame0_, CV_BGR2GRAY); grayFrame0 = grayFrame0_; } // find keypoints detector_(grayFrame0, pointsPrev_); // find correspondences optFlowEstimator_.run(frame0, frame1, pointsPrev_, points_, status_); // leave good correspondences only gpu::compactPoints(pointsPrev_, points_, status_); pointsPrev_.download(hostPointsPrev_); points_.download(hostPoints_); // perform outlier rejection IOutlierRejector *rejector = static_cast(outlierRejector_); if (!dynamic_cast(rejector)) { outlierRejector_->process(frame0.size(), hostPointsPrev_, hostPoints_, rejectionStatus_); hostPointsPrevTmp_.clear(); hostPointsPrevTmp_.reserve(hostPoints_.cols); hostPointsTmp_.clear(); hostPointsTmp_.reserve(hostPoints_.cols); for (int i = 0; i < hostPoints_.cols; ++i) { if (rejectionStatus_[i]) { hostPointsPrevTmp_.push_back(hostPointsPrev_.at(0,i)); hostPointsTmp_.push_back(hostPoints_.at(0,i)); } } hostPointsPrev_ = Mat(1, (int)hostPointsPrevTmp_.size(), CV_32FC2, &hostPointsPrevTmp_[0]); hostPoints_ = Mat(1, (int)hostPointsTmp_.size(), CV_32FC2, &hostPointsTmp_[0]); } // estimate motion return motionEstimator_->estimate(hostPointsPrev_, hostPoints_, ok); } #endif // HAVE_OPENCV_GPU Mat getMotion(int from, int to, const vector &motions) { Mat M = Mat::eye(3, 3, CV_32F); if (to > from) { for (int i = from; i < to; ++i) M = at(i, motions) * M; } else if (from > to) { for (int i = to; i < from; ++i) M = at(i, motions) * M; M = M.inv(); } return M; } } // namespace videostab } // namespace cv