// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2024, OpenCV Team, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include #include #include // CV_DNN_REGISTER_LAYER_CLASS namespace opencv_test { namespace { class Layer_Test_01D: public testing::TestWithParam>> { public: std::vector input_shape; std::vector output_shape; float inp_value; Mat input; LayerParams lp; void SetUp() { input_shape = get<0>(GetParam()); output_shape = input_shape; // generate random positeve value from 1 to 10 RNG& rng = TS::ptr()->get_rng(); inp_value = rng.uniform(1.0, 10.0); // random uniform value input = Mat(input_shape.size(), input_shape.data(), CV_32F, inp_value); } void TestLayer(Ptr layer, std::vector &inputs, const Mat& output_ref){ std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } }; TEST_P(Layer_Test_01D, Scale) { lp.type = "Scale"; lp.name = "ScaleLayer"; lp.set("axis", 0); lp.set("mode", "scale"); lp.set("bias_term", false); Ptr layer = ScaleLayer::create(lp); Mat weight = Mat(output_shape.size(), output_shape.data(), CV_32F, 2.0); std::vector inputs{input, weight}; Mat output_ref = input.mul(weight); TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, ReLU6) { lp.type = "ReLU6"; lp.name = "ReLU6Layer"; lp.set("min_value", 0.0); lp.set("max_value", 1.0); Ptr layer = ReLU6Layer::create(lp); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, 1.0); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Clip) { lp.type = "Clip"; lp.name = "ClipLayer"; lp.set("min_value", 0.0); lp.set("max_value", 1.0); Ptr layer = ReLU6Layer::create(lp); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, 1.0); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, ReLU) { lp.type = "ReLU"; lp.name = "ReluLayer"; lp.set("negative_slope", 0.0); Ptr layer = ReLULayer::create(lp); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, inp_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Gelu) { lp.type = "Gelu"; lp.name = "GeluLayer"; Ptr layer = GeluLayer::create(lp); float value = inp_value * 0.5 * (std::erf(inp_value * 1 / std::sqrt(2.0)) + 1.0); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, GeluApprox) { lp.type = "GeluApprox"; lp.name = "GeluApproxLayer"; Ptr layer = GeluApproximationLayer::create(lp); float value = inp_value * 0.5 * (1.0 + std::tanh(std::sqrt(2.0 / M_PI) * (inp_value + 0.044715 * std::pow(inp_value, 3)))); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Sigmoid) { lp.type = "Sigmoid"; lp.name = "SigmoidLayer"; Ptr layer = SigmoidLayer::create(lp); float value = 1.0 / (1.0 + std::exp(-inp_value)); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Tanh) { lp.type = "TanH"; lp.name = "TanHLayer"; Ptr layer = TanHLayer::create(lp); float value = std::tanh(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Swish) { lp.type = "Swish"; lp.name = "SwishLayer"; Ptr layer = SwishLayer::create(lp); float value = inp_value / (1 + std::exp(-inp_value)); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Mish) { lp.type = "Mish"; lp.name = "MishLayer"; Ptr layer = MishLayer::create(lp); float value = inp_value * std::tanh(std::log(1 + std::exp(inp_value))); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, ELU) { lp.type = "ELU"; lp.name = "EluLayer"; lp.set("alpha", 1.0); Ptr layer = ELULayer::create(lp); float value = inp_value > 0 ? inp_value : std::exp(inp_value) - 1; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Abs) { lp.type = "Abs"; lp.name = "AbsLayer"; Ptr layer = AbsLayer::create(lp); float value = std::abs(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, BNLL) { lp.type = "BNLL"; lp.name = "BNLLLayer"; Ptr layer = BNLLLayer::create(lp); float value = std::log(1 + std::exp(inp_value)); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Ceil) { lp.type = "Ceil"; lp.name = "CeilLayer"; Ptr layer = CeilLayer::create(lp); float value = std::ceil(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Floor) { lp.type = "Floor"; lp.name = "FloorLayer"; Ptr layer = FloorLayer::create(lp); float value = std::floor(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Log) { lp.type = "Log"; lp.name = "LogLayer"; Ptr layer = LogLayer::create(lp); float value = std::log(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Round) { lp.type = "Round"; lp.name = "RoundLayer"; Ptr layer = RoundLayer::create(lp); float value = std::round(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Sqrt) { lp.type = "Sqrt"; lp.name = "SqrtLayer"; Ptr layer = SqrtLayer::create(lp); float value = std::sqrt(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Acos) { lp.type = "Acos"; lp.name = "AcosLayer"; Ptr layer = AcosLayer::create(lp); inp_value = 0.5 + static_cast (inp_value) / (static_cast (RAND_MAX/(1-0.5))); input = Mat(input_shape.size(), input_shape.data(), CV_32F, inp_value); float value = std::acos(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Acosh) { lp.type = "Acosh"; lp.name = "AcoshLayer"; Ptr layer = AcoshLayer::create(lp); float value = std::acosh(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Asin) { lp.type = "Asin"; lp.name = "AsinLayer"; Ptr layer = AsinLayer::create(lp); inp_value = 0.5 + static_cast (inp_value) / (static_cast (RAND_MAX/(1-0.5))); input = Mat(input_shape.size(), input_shape.data(), CV_32F, inp_value); float value = std::asin(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Asinh) { lp.type = "Asinh"; lp.name = "AsinhLayer"; Ptr layer = AsinhLayer::create(lp); float value = std::asinh(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Atan) { lp.type = "Atan"; lp.name = "AtanLayer"; Ptr layer = AtanLayer::create(lp); float value = std::atan(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Cos) { lp.type = "Cos"; lp.name = "CosLayer"; Ptr layer = CosLayer::create(lp); float value = std::cos(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Cosh) { lp.type = "Cosh"; lp.name = "CoshLayer"; Ptr layer = CoshLayer::create(lp); float value = std::cosh(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Sin) { lp.type = "Sin"; lp.name = "SinLayer"; Ptr layer = SinLayer::create(lp); float value = std::sin(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Sinh) { lp.type = "Sinh"; lp.name = "SinhLayer"; Ptr layer = SinhLayer::create(lp); float value = std::sinh(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Tan) { lp.type = "Tan"; lp.name = "TanLayer"; Ptr layer = TanLayer::create(lp); float value = std::tan(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Erf) { lp.type = "Erf"; lp.name = "ErfLayer"; Ptr layer = ErfLayer::create(lp); float out_value = std::erf(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Reciprocal) { lp.type = "Reciprocal"; lp.name = "ReciprocalLayer"; Ptr layer = ReciprocalLayer::create(lp); float out_value = 1/inp_value; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, HardSwish) { lp.type = "HardSwish"; lp.name = "HardSwishLayer"; Ptr layer = HardSwishLayer::create(lp); float out_value = inp_value * std::max(0.0f, std::min(6.0f, inp_value + 3.0f)) / 6.0f; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Softplus) { lp.type = "Softplus"; lp.name = "SoftplusLayer"; Ptr layer = SoftplusLayer::create(lp); float out_value = std::log(1 + std::exp(inp_value)); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, SoftSign) { lp.type = "Softsign"; lp.name = "SoftsignLayer"; Ptr layer = SoftsignLayer::create(lp); float out_value = inp_value / (1 + std::abs(inp_value)); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, CELU) { lp.type = "CELU"; lp.name = "CeluLayer"; lp.set("alpha", 1.0); Ptr layer = CeluLayer::create(lp); float out_value = inp_value < 0 ? std::exp(inp_value) - 1 : inp_value; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, HardSigmoid) { lp.type = "HardSigmoid"; lp.name = "HardSigmoidLayer"; Ptr layer = HardSigmoidLayer::create(lp); float out_value = std::max(0.0f, std::min(1.0f, 0.2f * inp_value + 0.5f)); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, SELU) { lp.type = "SELU"; lp.name = "SeluLayer"; lp.set("alpha", 1.6732631921768188); lp.set("gamma", 1.0507009873554805); Ptr layer = SeluLayer::create(lp); double inp_value_double = static_cast(inp_value); // Ensure the input is treated as double for the computation double value_double = 1.0507009873554805 * (inp_value_double > 0 ? inp_value_double : 1.6732631921768188 * (std::exp(inp_value_double / 1.0) - 1)); float value = static_cast(value_double); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, ThresholdedReLU) { lp.type = "ThresholdedRelu"; lp.name = "ThresholdedReluLayer"; lp.set("alpha", 1.0); Ptr layer = ThresholdedReluLayer::create(lp); float value = inp_value > 1.0 ? inp_value : 0.0; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Power) { lp.type = "Power"; lp.name = "PowerLayer"; lp.set("power", 2.0); lp.set("scale", 1.0); lp.set("shift", 0.0); Ptr layer = PowerLayer::create(lp); float value = std::pow(inp_value, 2.0); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Exp) { lp.type = "Exp"; lp.name = "ExpLayer"; Ptr layer = ExpLayer::create(lp); float out_value = std::exp(inp_value); Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, out_value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Sign) { lp.type = "Sign"; lp.name = "SignLayer"; Ptr layer = SignLayer::create(lp); float value = inp_value > 0 ? 1.0 : 0.0; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, Shrink) { lp.type = "Shrink"; lp.name = "ShrinkLayer"; lp.set("lambda", 0.5); lp.set("bias", 0.5); Ptr layer = ShrinkLayer::create(lp); float value = inp_value > 0.5 ? inp_value - 0.5 : 0.0; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } TEST_P(Layer_Test_01D, ChannelsPReLU) { lp.type = "ChannelsPReLU"; lp.name = "ChannelsPReLULayer"; Mat alpha = Mat(1, 3, CV_32F, 0.5); lp.blobs.push_back(alpha); Ptr layer = ChannelsPReLULayer::create(lp); float value = inp_value > 0 ? inp_value : 0.5 * inp_value; Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, value); std::vector inputs{input}; TestLayer(layer, inputs, output_ref); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Test_01D, testing::Values( std::vector{}, std::vector{1} )); typedef testing::TestWithParam, int>> Layer_Gather_Test; TEST_P(Layer_Gather_Test, Accuracy_01D) { std::vector input_shape = get<0>(GetParam()); int axis = get<1>(GetParam()); // skip case when axis > input shape if (axis > input_shape.size()) return; LayerParams lp; lp.type = "Gather"; lp.name = "GatherLayer"; lp.set("axis", axis); lp.set("real_ndims", 1); Ptr layer = GatherLayer::create(lp); cv::Mat input(input_shape.size(), input_shape.data(), CV_32F); cv::randu(input, 0.0, 1.0); std::vector indices_shape = {1}; cv::Mat indices = cv::Mat(indices_shape.size(), indices_shape.data(), CV_32S, 0.0); cv::Mat output_ref; if (input_shape.size() == 0 || input_shape.size() == 1){ output_ref = input; } else if (axis == 0){ output_ref = input.row(0); } else if (axis == 1){ output_ref = input.col(0); } std::vector inputs{input, indices}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Gather_Test, Combine( /*input blob shape*/ testing::Values( std::vector({}), std::vector({1}), std::vector({1, 4}), std::vector({4, 4}) ), /*axis*/ testing::Values(0, 1) )); template int arg_op(const std::vector& vec, const std::string& operation) { CV_Assert(!vec.empty()); if (operation == "max") { return static_cast(std::distance(vec.begin(), std::max_element(vec.begin(), vec.end()))); } else if (operation == "min") { return static_cast(std::distance(vec.begin(), std::min_element(vec.begin(), vec.end()))); } else { CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation."); } } // Test for ArgLayer is disabled because there problem in runLayer function related to type assignment typedef testing::TestWithParam, std::string>> Layer_Arg_Test; TEST_P(Layer_Arg_Test, Accuracy_01D) { std::vector input_shape = get<0>(GetParam()); std::string operation = get<1>(GetParam()); LayerParams lp; lp.type = "Arg"; lp.name = "Arg" + operation + "_Layer"; int axis = (input_shape.size() == 0 || input_shape.size() == 1 ) ? 0 : 1; lp.set("op", operation); lp.set("axis", axis); lp.set("keepdims", 1); lp.set("select_last_index", 0); Ptr layer = ArgLayer::create(lp); cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F); for (int i = 0; i < input.total(); i++){ input.at(i) = i; } // create reference output with required shape and values int index; cv::Mat output_ref; std::vector ref_output; if (input_shape.size() == 2 ){ int rows = input_shape[0]; int cols = input_shape[1]; ref_output.resize(rows); for (int i = 0; i < rows; i++) { std::vector row_vec(cols); for (int j = 0; j < cols; j++) { row_vec[j] = input.at(i, j); } ref_output[i] = (int) arg_op(row_vec, operation); } output_ref = cv::Mat(rows, (axis == 1) ? 1 : cols, CV_32S, ref_output.data()); } else if (input_shape.size() <= 1) { index = arg_op(std::vector(input.begin(), input.end()), operation); output_ref = cv::Mat(input_shape.size(), input_shape.data(), CV_32FC1, &index); } std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); // convert output_ref to float to match the output type output_ref.convertTo(output_ref, CV_64SC1); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Arg_Test, Combine( /*input blob shape*/ testing::Values( std::vector({}), std::vector({1}), std::vector({1, 4}), std::vector({4, 4}) ), /*operation*/ Values( "max", "min") )); typedef testing::TestWithParam, std::string>> Layer_NaryElemwise_1d_Test; TEST_P(Layer_NaryElemwise_1d_Test, Accuracy) { std::vector input_shape = get<0>(GetParam()); std::string operation = get<1>(GetParam()); LayerParams lp; lp.type = "NaryEltwise"; lp.name = operation + "_Layer"; lp.set("operation", operation); Ptr layer = NaryEltwiseLayer::create(lp); cv::Mat input1 = cv::Mat(input_shape.size(), input_shape.data(), CV_32F); cv::Mat input2 = cv::Mat(input_shape.size(), input_shape.data(), CV_32F); cv::randu(input1, 0.0, 1.0); cv::randu(input2, 0.0, 1.0); cv::Mat output_ref; if (operation == "sum") { output_ref = input1 + input2; } else if (operation == "mul") { output_ref = input1.mul(input2); } else if (operation == "div") { output_ref = input1 / input2; } else if (operation == "sub") { output_ref = input1 - input2; } else { output_ref = cv::Mat(); } std::vector inputs{input1, input2}; std::vector outputs; runLayer(layer, inputs, outputs); if (!output_ref.empty()) { ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } else { CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation."); } } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_NaryElemwise_1d_Test, Combine( /*input blob shape*/ testing::Values( std::vector({}), std::vector({1}), std::vector({1, 4}), std::vector({4, 1})), /*operation*/ testing::Values("div", "mul", "sum", "sub") )); typedef testing::TestWithParam, std::string>> Layer_Elemwise_1d_Test; TEST_P(Layer_Elemwise_1d_Test, Accuracy_01D) { std::vector input_shape = get<0>(GetParam()); std::string operation = get<1>(GetParam()); LayerParams lp; lp.type = "Eltwise"; lp.name = operation + "_Layer"; lp.set("operation", operation); Ptr layer = EltwiseLayer::create(lp); cv::Mat input1(input_shape.size(), input_shape.data(), CV_32F); cv::Mat input2(input_shape.size(), input_shape.data(), CV_32F); cv::randu(input1, 0.0, 1.0); cv::randu(input2, 0.0, 1.0); // Dynamically select the operation cv::Mat output_ref; if (operation == "sum") { output_ref = input1 + input2; } else if (operation == "max") { output_ref = cv::max(input1, input2); } else if (operation == "min") { output_ref = cv::min(input1, input2); } else if (operation == "prod") { output_ref = input1.mul(input2); } else if (operation == "div") { output_ref = input1 / input2; } else { output_ref = cv::Mat(); } std::vector inputs{input1, input2}; std::vector outputs; runLayer(layer, inputs, outputs); if (!output_ref.empty()) { ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } else { CV_Error(Error::StsAssert, "Provided operation: " + operation + " is not supported. Please check the test instantiation."); } } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Elemwise_1d_Test, Combine( /*input blob shape*/ testing::Values( std::vector({}), std::vector({1}), std::vector({4}), std::vector({1, 4}), std::vector({4, 1})), /*operation*/ testing::Values("div", "prod", "max", "min", "sum") )); TEST(Layer_Reshape_Test, Accuracy_1D) { LayerParams lp; lp.type = "Reshape"; lp.name = "ReshapeLayer"; lp.set("axis", 0); // Set axis to 0 to start reshaping from the first dimension lp.set("num_axes", -1); // Set num_axes to -1 to indicate all following axes are included in the reshape int newShape[] = {1}; lp.set("dim", DictValue::arrayInt(newShape, 1)); Ptr layer = ReshapeLayer::create(lp); std::vector input_shape = {0}; Mat input(0, input_shape.data(), CV_32F); randn(input, 0.0, 1.0); Mat output_ref(1, newShape, CV_32F, input.data); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } typedef testing::TestWithParam>> Layer_Split_Test; TEST_P(Layer_Split_Test, Accuracy_01D) { LayerParams lp; lp.type = "Split"; lp.name = "SplitLayer"; int top_count = 2; // 2 is for simplicity lp.set("top_count", top_count); Ptr layer = SplitLayer::create(lp); std::vector input_shape = std::get<0>(GetParam()); Mat input(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0.0, 1.0); Mat output_ref = Mat(input_shape.size(), input_shape.data(), CV_32F, input.data); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(outputs.size(), top_count); for (int i = 0; i < top_count; i++) { ASSERT_EQ(shape(outputs[i]), shape(output_ref)); normAssert(output_ref, outputs[i]); } } INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_Split_Test, testing::Values( std::vector({}), std::vector({1}), std::vector({1, 4}), std::vector({1, 5}), std::vector({4, 1}), std::vector({4, 5}) )); typedef testing::TestWithParam, std::vector>> Layer_Expand_Test; TEST_P(Layer_Expand_Test, Accuracy_ND) { std::vector input_shape = get<0>(GetParam()); std::vector target_shape = get<1>(GetParam()); if (input_shape.size() >= target_shape.size()) // Skip if input shape is already larger than target shape return; LayerParams lp; lp.type = "Expand"; lp.name = "ExpandLayer"; lp.set("shape", DictValue::arrayInt(&target_shape[0], target_shape.size())); Ptr layer = ExpandLayer::create(lp); Mat input(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0.0, 1.0); cv::Mat output_ref(target_shape, CV_32F, input.data); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Expand_Test, Combine( /*input blob shape*/ testing::Values( std::vector({}), std::vector({1}), std::vector({1, 1}), std::vector({1, 1, 1}) ), /*output blob shape*/ testing::Values( std::vector({1}), std::vector({1, 1}), std::vector({1, 1, 1}), std::vector({1, 1, 1, 1}) ) )); typedef testing::TestWithParam>> Layer_Concat_Test; TEST_P(Layer_Concat_Test, Accuracy_01D) { LayerParams lp; lp.type = "Concat"; lp.name = "ConcatLayer"; lp.set("axis", 0); Ptr layer = ConcatLayer::create(lp); std::vector input_shape = get<0>(GetParam()); std::vector output_shape = {3}; Mat input1(input_shape.size(), input_shape.data(), CV_32F, 1.0); Mat input2(input_shape.size(), input_shape.data(), CV_32F, 2.0); Mat input3(input_shape.size(), input_shape.data(), CV_32F, 3.0); float data[] = {1.0, 2.0, 3.0}; Mat output_ref(output_shape, CV_32F, data); std::vector inputs{input1, input2, input3}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Concat_Test, /*input blob shape*/ testing::Values( // ONNX Concat produces output tensor of the same dimensionality as inputs. // Therefore 0-dimensional tensors cannot be concatenated. // They first need to be converted to 1D tensors, e.g. using Unsqueeze. //std::vector({}), std::vector({1}) )); typedef testing::TestWithParam, int>> Layer_Softmax_Test; TEST_P(Layer_Softmax_Test, Accuracy_01D) { int axis = get<1>(GetParam()); std::vector input_shape = get<0>(GetParam()); if ((input_shape.size() == 0 && axis == 1) || (!input_shape.empty() && input_shape.size() == 2 && input_shape[0] > 1 && axis == 1) || (!input_shape.empty() && input_shape[0] > 1 && axis == 0)) // skip since not valid case return; LayerParams lp; lp.type = "Softmax"; lp.name = "softmaxLayer"; lp.set("axis", axis); Ptr layer = SoftmaxLayer::create(lp); Mat input = Mat(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0.0, 1.0); Mat output_ref; cv::exp(input, output_ref); if (axis == 1){ cv::divide(output_ref, cv::sum(output_ref), output_ref); } else { cv::divide(output_ref, output_ref, output_ref); } std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Softmax_Test, Combine( /*input blob shape*/ testing::Values( std::vector({}), std::vector({1}), std::vector({4}), std::vector({1, 4}), std::vector({4, 1}) ), /*Axis */ testing::Values(0, 1) )); typedef testing::TestWithParam>, std::string>> Layer_Scatter_Test; TEST_P(Layer_Scatter_Test, Accuracy1D) { auto tup = get<0>(GetParam()); int axis = get<0>(tup); std::vector input_shape = get<1>(tup); std::string opr = get<1>(GetParam()); LayerParams lp; lp.type = "Scatter"; lp.name = "ScatterLayer"; lp.set("axis", axis); lp.set("reduction", opr); Ptr layer = ScatterLayer::create(lp); cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0.0, 1.0); int indices[] = {3, 2, 1, 0}; cv::Mat indices_mat(input_shape.size(), input_shape.data(), CV_32S, indices); cv::Mat output(input_shape.size(), input_shape.data(), CV_32F, 0.0); // create reference output cv::Mat output_ref(input_shape, CV_32F, 0.0); for (int i = 0; i < ((input_shape.size() == 1) ? input_shape[0] : input_shape[1]); i++){ output_ref.at(indices[i]) = input.at(i); } if (opr == "add"){ output_ref += output; } else if (opr == "mul"){ output_ref = output.mul(output_ref); } else if (opr == "max"){ cv::max(output_ref, output, output_ref); } else if (opr == "min"){ cv::min(output_ref, output, output_ref); } std::vector inputs{output, indices_mat, input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Scatter_Test, Combine( /*input blob shape*/ testing::Values(std::make_tuple(0, std::vector{4}), std::make_tuple(1, std::vector{1, 4})), /*reduce*/ testing::Values("none", "add", "mul", "max", "min") )); typedef testing::TestWithParam, std::string, int>> Layer_Reduce_Test; TEST_P(Layer_Reduce_Test, Accuracy_01D) { auto reduceOperation = [](const cv::Mat& input, const std::string& operation, int axis) -> cv::Mat { // Initialize result matrix cv::Mat result; MatShape inpshape = input.shape(); if (inpshape.dims == 0) { result = cv::Mat(0, nullptr, CV_32F); } else if (inpshape.dims == 1) { result = cv::Mat({1}, CV_32F); } else { if (axis == 0) { result = cv::Mat::zeros(1, input.cols, CV_32F); } else { result = cv::Mat::zeros(input.rows, 1, CV_32F); } } auto process_value = [&](float& res, float value, bool is_first) { if (operation == "max") { res = is_first ? value : std::max(res, value); } else if (operation == "min") { res = is_first ? value : std::min(res, value); } else { if (is_first) { if (operation == "sum" || operation == "l1" || operation == "l2" || operation == "sum_square" || operation == "mean" || operation == "log_sum" || operation == "log_sum_exp") res = 0; else if (operation == "prod") res = 1; } if (operation == "sum" || operation == "mean") res += value; else if (operation == "sum_square") { res += value * value; } else if (operation == "l1") res += std::abs(value); else if (operation == "l2") res += value * value; else if (operation == "prod") res *= value; else if (operation == "log_sum") res += value; else if (operation == "log_sum_exp") res += std::exp(value); } }; for (int r = 0; r < input.rows; ++r) { for (int c = 0; c < input.cols; ++c) { float value = input.at(r, c); if (shape(input).size() == 1 && shape(input)[0] != 1 && axis == 0){ process_value(result.at(0, 0), value, c == 0); } else { if (axis == 0) { process_value(result.at(0, c), value, r == 0); } else { process_value(result.at(r, 0), value, c == 0); } } } } if (operation == "mean") { if (shape(input).size() == 1 && shape(input)[0] != 1 && axis == 0){ result.at(0, 0) /= input.cols; } else { if (axis == 0) { result /= input.rows; } else { result /= input.cols; } } } else if (operation == "l2") { cv::sqrt(result, result); } else if (operation == "log_sum_exp" || operation == "log_sum") { cv::log(result, result); } return result; }; std::vector input_shape = get<0>(GetParam()); std::string reduce_operation = get<1>(GetParam()); int axis = get<2>(GetParam()); if ((input_shape.size() == 2 && reduce_operation == "log_sum") || (axis > input_shape.size())) // both output and reference are nans return; LayerParams lp; lp.type = "Reduce"; lp.name = "reduceLayer"; lp.set("reduce", reduce_operation); // for scalar tensors we cannot specify reduction axis, // because it will be out-of-range anyway if (!input_shape.empty()) lp.set("axes", axis); lp.set("keepdims", true); Ptr layer = ReduceLayer::create(lp); cv::Mat input((int)input_shape.size(), input_shape.data(), CV_32F, 1.0); cv::randu(input, 0.0, 1.0); cv::Mat output_ref = reduceOperation(input, reduce_operation, axis); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(outputs.size(), 1); MatShape ref_shape = output_ref.shape(); MatShape out_shape = outputs[0].shape(); ASSERT_EQ(ref_shape, out_shape) << "ref_shape " << ref_shape.str() << " does not match output shape " << out_shape.str(); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Reduce_Test, Combine( /*input blob shape*/ Values( std::vector({}), std::vector({1}), std::vector({4}), std::vector({1, 4}), std::vector({4, 1}), std::vector({4, 4}) ), /*reduce operation type*/ Values("max", "min", "mean", "sum", "sum_square", "l1", "l2", "prod", "log_sum", "log_sum_exp"), Values(0, 1)) ); typedef testing::TestWithParam>> Layer_Permute_Test; TEST_P(Layer_Permute_Test, Accuracy_01D) { LayerParams lp; lp.type = "Permute"; lp.name = "PermuteLayer"; int order[] = {0}; // Since it's a 0D tensor, the order remains [0] lp.set("order", DictValue::arrayInt(order, 1)); Ptr layer = PermuteLayer::create(lp); std::vector input_shape = get<0>(GetParam()); Mat input = Mat(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0.0, 1.0); Mat output_ref = input.clone(); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Permute_Test, /*input blob shape*/ testing::Values( std::vector{}, std::vector{1}, std::vector{1, 4}, std::vector{4, 1} )); typedef testing::TestWithParam>> Layer_Slice_Test; TEST_P(Layer_Slice_Test, Accuracy_1D){ LayerParams lp; lp.type = "Slice"; lp.name = "SliceLayer"; std::vector input_shape = get<0>(GetParam()); int splits = 2; int axis = (input_shape.size() > 1 ) ? 1 : 0; lp.set("axis", axis); lp.set("num_split", splits); Ptr layer = SliceLayer::create(lp); std::vector output_shape; if (input_shape.size() > 1) output_shape = {1, input_shape[1] / splits}; else output_shape = {input_shape[0] / splits}; cv::Mat input = cv::Mat(input_shape, CV_32F); cv::randu(input, 0.0, 1.0); std::vector output_refs; for (int i = 0; i < splits; ++i){ output_refs.push_back(cv::Mat(output_shape, CV_32F)); if (input_shape.size() > 1 ) { for (int j = 0; j < output_shape[1]; ++j){ output_refs[i].at(j) = input.at(i * output_shape[1] + j); } } else { for (int j = 0; j < output_shape[0]; ++j){ output_refs[i].at(j) = input.at(i * output_shape[0] + j); } } } std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(outputs.size(), splits); for (int i = 0; i < splits; ++i){ ASSERT_EQ(shape(outputs[i]), shape(output_refs[i])); normAssert(output_refs[i], outputs[i]); } } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Slice_Test, /*input blob shape*/ testing::Values( std::vector({4}), std::vector({1, 4}) )); typedef testing::TestWithParam>> Layer_Padding_Test; TEST_P(Layer_Padding_Test, Accuracy_01D){ std::vector input_shape = get<0>(GetParam()); float pad_value = 10; LayerParams lp; lp.type = "Padding"; lp.name = "PaddingLayer"; std::vector paddings = {5, 3}; // Pad before and pad after for one dimension lp.set("paddings", DictValue::arrayInt(paddings.data(), paddings.size())); lp.set("value", pad_value); lp.set("input_dims", (input_shape.size() == 1) ? -1 : 0); Ptr layer = PaddingLayer::create(lp); cv::Mat input(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0.0, 1.0); // Fill in the padding values manually // Create output ref shape depending on the input shape and input_dims std::vector output_shape; if (input_shape.size() == 0){ output_shape = {1 + paddings[0] + paddings[1]}; } else if (input_shape.size() == 1){ output_shape = {input_shape[0] + paddings[0] + paddings[1]}; } else { output_shape = {input_shape[0], input_shape[1] + paddings[0] + paddings[1]}; } cv::Mat output_ref(output_shape.size(), output_shape.data(), CV_32F, pad_value); if (input_shape.size() == 0){ output_ref.at(paddings[0]) = input.at(0); } else if (input_shape.size() == 1){ for (int i = 0; i < input_shape[0]; ++i){ output_ref.at(i + paddings[0]) = input.at(i); } } else { for (int i = 0; i < input_shape[0]; ++i){ for (int j = 0; j < input_shape[1]; ++j){ output_ref.at(i, j + paddings[0]) = input.at(i, j); } } } std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Padding_Test, /*input blob shape*/ testing::Values( //scalars cannot be padded //std::vector{}, std::vector{1}, std::vector{1, 4}, std::vector{4, 1} )); typedef testing::TestWithParam>> Layer_FullyConnected_Test; TEST_P(Layer_FullyConnected_Test, Accuracy_01D) { LayerParams lp; lp.type = "InnerProduct"; lp.name = "InnerProductLayer"; lp.set("num_output", 1); lp.set("bias_term", false); lp.set("axis", 0); MatShape input_shape(get<0>(GetParam())); RNG& rng = TS::ptr()->get_rng(); float inp_value = rng.uniform(0.0, 10.0); Mat weights({(int)input_shape.total(), 1}, CV_32F, inp_value); lp.blobs.push_back(weights); Ptr layer = LayerFactory::createLayerInstance("InnerProduct", lp); Mat input(input_shape, CV_32F); randn(input, 0, 1); Mat output_ref = input.reshape(1, 1) * weights; output_ref.dims = input_shape.dims; std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); MatShape ref_shape = output_ref.shape(); MatShape out_shape = outputs[0].shape(); ASSERT_EQ(ref_shape, out_shape) << "ref_shape " << ref_shape.str() << "does not match output shape " << out_shape.str(); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_FullyConnected_Test, testing::Values( //only bias could be broadcasted from a scalar //std::vector({}), std::vector({1}), std::vector({4}) )); typedef testing::TestWithParam> Layer_BatchNorm_Test; TEST_P(Layer_BatchNorm_Test, Accuracy_01D) { std::vector input_shape = GetParam(); // Layer parameters LayerParams lp; lp.type = "BatchNorm"; lp.name = "BatchNormLayer"; lp.set("has_weight", false); lp.set("has_bias", false); RNG& rng = TS::ptr()->get_rng(); float inp_value = rng.uniform(0.0, 10.0); Mat meanMat(input_shape.size(), input_shape.data(), CV_32F, inp_value); Mat varMat(input_shape.size(), input_shape.data(), CV_32F, inp_value); vector blobs = {meanMat, varMat}; lp.blobs = blobs; // Create the layer Ptr layer = BatchNormLayer::create(lp); Mat input(input_shape.size(), input_shape.data(), CV_32F, 1.0); cv::randn(input, 0, 1); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); //create output_ref to compare with outputs Mat output_ref = input.clone(); cv::sqrt(varMat + 1e-5, varMat); output_ref = (output_ref - meanMat) / varMat; ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_BatchNorm_Test, testing::Values( std::vector({}), std::vector({4}), std::vector({1, 4}), std::vector({4, 1}) )); typedef testing::TestWithParam>> Layer_Const_Test; TEST_P(Layer_Const_Test, Accuracy_01D) { std::vector input_shape = get<0>(GetParam()); LayerParams lp; lp.type = "Const"; lp.name = "ConstLayer"; Mat constBlob = Mat(input_shape.size(), input_shape.data(), CV_32F); cv::randn(constBlob, 0.0, 1.0); Mat output_ref = constBlob.clone(); lp.blobs.push_back(constBlob); Ptr layer = ConstLayer::create(lp); std::vector inputs; // No inputs are needed for a ConstLayer std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Const_Test, testing::Values( std::vector({}), std::vector({1}), std::vector({1, 4}), std::vector({4, 1}) )); typedef testing::TestWithParam> Layer_Tile_Test; TEST_P(Layer_Tile_Test, Accuracy_01D){ std::vector input_shape = GetParam(); std::vector repeats = {2, 2}; LayerParams lp; lp.type = "Tile"; lp.name = "TileLayer"; lp.set("repeats", DictValue::arrayInt(repeats.data(), repeats.size())); Ptr layer = TileLayer::create(lp); cv::Mat input = cv::Mat(input_shape.size(), input_shape.data(), CV_32F); cv::randn(input, 0, 1); std::vector inputs{input}; std::vector outputs; runLayer(layer, inputs, outputs); // Manually create the expected output for verification cv::Mat output_ref = input.clone(); for (int i = 0; i < repeats.size(); ++i) { cv::Mat tmp; cv::repeat(output_ref, (i == 0 ? repeats[i] : 1), (i == 1 ? repeats[i] : 1), tmp); output_ref = tmp; } ASSERT_EQ(outputs.size(), 1); ASSERT_EQ(shape(outputs[0]), shape(output_ref)); normAssert(output_ref, outputs[0]); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Tile_Test, /*input blob shape*/ testing::Values( std::vector({}), std::vector({2}), std::vector({2, 1}), std::vector({1, 2}), std::vector({2, 2}) )); typedef testing::TestWithParam, std::vector, std::string>> Layer_Einsum_Test; TEST_P(Layer_Einsum_Test, Accuracy_01D) { auto tup = GetParam(); std::vector input_shape1 = std::get<0>(tup); std::vector input_shape2 = std::get<1>(tup); std::string equation = std::get<2>(tup); LayerParams lp; lp.type = "Einsum"; lp.name = "EinsumLayer"; lp.set("equation", equation); lp.set("inputSize", 2); lp.set("outputSize", 1); lp.set("inputShapes0", DictValue::arrayInt(input_shape1.data(), input_shape1.size())); lp.set("inputShapes1", DictValue::arrayInt(input_shape2.data(), input_shape2.size())); Ptr layer = EinsumLayer::create(lp); cv::Mat input1(input_shape1.size(), input_shape1.data(), CV_32F); cv::Mat input2(input_shape2.size(), input_shape2.data(), CV_32F); cv::randn(input1, 0.0, 1.0); cv::randn(input2, 0.0, 1.0); std::vector inputs = {input1, input2}; std::vector outputs; runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); // create output_ref to compare with outputs cv::Mat output_ref; int size[] = {1}; if(equation == ",->" || equation == "i,->i" || equation == ",i->i" || equation == "ij,->ij"){ output_ref = input1.mul(input2); if (equation == ",i->i") output_ref = output_ref.reshape(1, 1, size); } else if (equation == "i,i->i"){ output_ref = input1.mul(input2); } else if (equation == "i,i->"){ output_ref = input1.mul(input2); cv::Scalar sum = cv::sum(output_ref); output_ref = cv::Mat(0, nullptr, CV_32F, sum[0]); } else if (equation == "ij,ij->ij"){ output_ref = input1.mul(input2); } else if (equation == "ij,ij->i"){ output_ref = input1.mul(input2); if (input_shape1[0] == 1){ cv::Scalar sum = cv::sum(output_ref); output_ref = cv::Mat(1, size, CV_32F, sum[0]); } else if (input_shape1[1] == 1){ size[0] = input_shape1[0]; output_ref = output_ref.reshape(1, 1, size); } else { cv::reduce(output_ref, output_ref, 1, cv::REDUCE_SUM, CV_32F); size[0] = input_shape1[0]; output_ref = output_ref.reshape(1, 1, size); } } else { output_ref = cv::Mat(); } ASSERT_EQ(shape(output_ref), shape(outputs[0])); normAssert(output_ref, outputs[0]); } // BUG: https://github.com/opencv/opencv/issues/26193 INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Einsum_Test, testing::Values( std::make_tuple(std::vector({}), std::vector({}), ",->"), std::make_tuple(std::vector({1}), std::vector({}), "i,->i"), std::make_tuple(std::vector({}), std::vector({1}), ",i->i"), std::make_tuple(std::vector({4, 1}), std::vector({}), "ij,->ij"), // std::make_tuple(std::vector({}), std::vector({4, 1}), ",ij->ij")), // mul function of arithm_op can not handle cases with different number of channels std::make_tuple(std::vector({1}), std::vector({1}), "i,i->i"), std::make_tuple(std::vector({1}), std::vector({1}), "i,i->"), std::make_tuple(std::vector({4}), std::vector({4}), "i,i->i"), std::make_tuple(std::vector({4}), std::vector({4}), "i,i->"), std::make_tuple(std::vector({1, 4}), std::vector({1, 4}), "ij,ij->ij"), std::make_tuple(std::vector({4, 1}), std::vector({4, 1}), "ij,ij->ij"), std::make_tuple(std::vector({1, 4}), std::vector({1, 4}), "ij,ij->i"), std::make_tuple(std::vector({4, 1}), std::vector({4, 1}), "ij,ij->i"), std::make_tuple(std::vector({4, 4}), std::vector({4, 4}), "ij,ij->i") )); }}