// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include #include // EXPECT_MAT_NEAR namespace opencv_test { namespace { TEST(multiview_calibration, accuracy) { // convert euler angles to rotation matrix const auto euler2rot = [] (double x, double y, double z) { cv::Matx33d R_x(1, 0, 0, 0, cos(x), -sin(x), 0, sin(x), cos(x)); cv::Matx33d R_y(cos(y), 0, sin(y), 0, 1, 0, -sin(y), 0, cos(y)); cv::Matx33d R_z(cos(z), -sin(z), 0, sin(z), cos(z), 0, 0, 0, 1); return cv::Mat(R_z * R_y * R_x); }; const cv::Size board_size (5,4); cv::RNG rng(0); const double board_len = 0.08, noise_std = 0.04; const int num_cameras = 4, num_pts = board_size.area(); std::vector board_pattern (num_pts); // fill pattern points for (int j = 0; j < board_size.height; j++) { for (int i = 0; i < board_size.width; i++) { board_pattern[j*board_size.width+i] = cv::Vec3f ((float)i, (float)j, 0)*board_len; } } std::vector models(num_cameras, cv::CALIB_MODEL_PINHOLE); std::vector image_sizes(num_cameras); std::vector Ks_gt, distortions_gt, Rs_gt, Ts_gt; for (int c = 0; c < num_cameras; c++) { // generate intrinsics and extrinsics image_sizes[c] = cv::Size(rng.uniform(1300, 1500), rng.uniform(900, 1300)); const double focal = rng.uniform(900.0, 1300.0); cv::Matx33d K(focal, 0, (double)image_sizes[c].width/2., 0, focal, (double)image_sizes[c].height/2., 0, 0, 1); cv::Matx dist (rng.uniform(1e-1, 3e-1), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2), rng.uniform(1e-2, 5e-2)); Ks_gt.emplace_back(cv::Mat(K)); distortions_gt.emplace_back(cv::Mat(dist)); if (c == 0) { // I | 0 Rs_gt.emplace_back(cv::Mat(cv::Matx33d::eye())); Ts_gt.emplace_back(cv::Mat(cv::Vec3d::zeros())); } else { const double ty_min = -.3, ty_max = .3, tx_min = -.3, tx_max = .3, tz_min = -.1, tz_max = .1; const double yaw_min = -20, yaw_max = 20, pitch_min = -20, pitch_max = 20, roll_min = -20, roll_max = 20; Rs_gt.emplace_back(euler2rot(rng.uniform(yaw_min, yaw_max)*M_PI/180, rng.uniform(pitch_min, pitch_max)*M_PI/180, rng.uniform(roll_min, roll_max)*M_PI/180)); Ts_gt.emplace_back(cv::Mat(cv::Vec3d(rng.uniform(tx_min, tx_max), rng.uniform(ty_min, ty_max), rng.uniform(tz_min, tz_max)))); } } const int MAX_SAMPLES = 2000, MAX_FRAMES = 50; cv::Mat pattern (board_pattern, true/*copy*/); pattern = pattern.reshape(1, num_pts).t(); pattern.row(2) = 2.0; // set approximate depth of object points const double ty_min = -2, ty_max = 2, tx_min = -2, tx_max = 2, tz_min = -1, tz_max = 1; const double yaw_min = -45, yaw_max = 45, pitch_min = -45, pitch_max = 45, roll_min = -45, roll_max = 45; std::vector> objPoints; std::vector> image_points_all(num_cameras); cv::Mat ones = cv::Mat_::ones(1, num_pts); std::vector> visibility; cv::Mat centroid = cv::Mat(cv::Matx31f( (float)cv::mean(pattern.row(0)).val[0], (float)cv::mean(pattern.row(1)).val[0], (float)cv::mean(pattern.row(2)).val[0])); for (int f = 0; f < MAX_SAMPLES; f++) { cv::Mat R = euler2rot(rng.uniform(yaw_min, yaw_max)*M_PI/180, rng.uniform(pitch_min, pitch_max)*M_PI/180, rng.uniform(roll_min, roll_max)*M_PI/180); cv::Mat t = cv::Mat(cv::Matx31f( (float)rng.uniform(tx_min, tx_max), (float)rng.uniform(ty_min, ty_max), (float)rng.uniform(tz_min, tz_max))); R.convertTo(R, CV_32F); cv::Mat pattern_new = (R * (pattern - centroid * ones) + centroid * ones + t * ones).t(); std::vector img_pts_cams(num_cameras); std::vector visible(num_cameras, (uchar)0); int num_visible_patterns = 0; for (int c = 0; c < num_cameras; c++) { cv::Mat img_pts; if (models[c] == cv::CALIB_MODEL_FISHEYE) { cv::fisheye::projectPoints(pattern_new, img_pts, Rs_gt[c], Ts_gt[c], Ks_gt[c], distortions_gt[c]); } else { cv::projectPoints(pattern_new, Rs_gt[c], Ts_gt[c], Ks_gt[c], distortions_gt[c], img_pts); } // add normal / Gaussian noise to image points cv::Mat noise (img_pts.rows, img_pts.cols, img_pts.type()); rng.fill(noise, cv::RNG::NORMAL, 0, noise_std); img_pts += noise; bool are_all_pts_in_image = true; const auto * const pts = (float *) img_pts.data; for (int i = 0; i < num_pts; i++) { if (pts[i*2 ] < 0 || pts[i*2 ] > (float)image_sizes[c].width || pts[i*2+1] < 0 || pts[i*2+1] > (float)image_sizes[c].height) { are_all_pts_in_image = false; break; } } if (are_all_pts_in_image) { visible[c] = 1; num_visible_patterns += 1; img_pts.copyTo(img_pts_cams[c]); } } if (num_visible_patterns >= 2) { objPoints.emplace_back(board_pattern); visibility.emplace_back(visible); for (int c = 0; c < num_cameras; c++) { image_points_all[c].emplace_back(img_pts_cams[c].clone()); } if (objPoints.size() >= MAX_FRAMES) break; } } cv::Mat visibility_mat = cv::Mat_(num_cameras, (int)objPoints.size()); for (int c = 0; c < num_cameras; c++) { for (int f = 0; f < (int)objPoints.size(); f++) { visibility_mat.at(c, f) = visibility[f][c]; } } std::vector Ks, distortions, Rs, Ts; calibrateMultiview(objPoints, image_points_all, image_sizes, visibility_mat, models, Rs, Ts, Ks, distortions); const double K_err_tol = 1e1, dist_tol = 5e-2, R_tol = 1e-2, T_tol = 1e-2; for (int c = 0; c < num_cameras; c++) { cv::Mat R; cv::Rodrigues(Rs[c], R); EXPECT_MAT_NEAR(Ks_gt[c], Ks[c], K_err_tol); CV_LOG_INFO(NULL, "true distortions: " << distortions_gt[c]); CV_LOG_INFO(NULL, "found distortions: " << distortions[c]); EXPECT_MAT_NEAR(distortions_gt[c], distortions[c], dist_tol); EXPECT_MAT_NEAR(Rs_gt[c], R, R_tol); EXPECT_MAT_NEAR(Ts_gt[c], Ts[c], T_tol); } } struct MultiViewTest : public ::testing::Test { std::vector genAsymmetricObjectPoints(cv::Size board_size = cv::Size(8, 11), float square_size = 0.04) { std::vector objectPoints; objectPoints.reserve(board_size.height*board_size.width); for( int i = 0; i < board_size.height; i++ ) { for( int j = 0; j < board_size.width; j++ ) { objectPoints.push_back(cv::Point3f((2*j + i % 2)*square_size, i*square_size, 0)); } } return objectPoints; } void loadImagePoints(const std::string& base_dir, const std::vector cameras, int frameCount, std::vector>& image_points_all, cv::Mat& visibility) { image_points_all.clear(); visibility.create(static_cast(cameras.size()), frameCount, CV_8UC1); for (int c = 0; c < static_cast(cameras.size()); c++) { std::vector camera_image_points; std::string fname = base_dir + cameras[c] + ".json"; FileStorage fs(fname, cv::FileStorage::READ); ASSERT_TRUE(fs.isOpened()) << "Cannot open points file " << fname; for (int i = 0; i < frameCount; i++) { std::string nodeName = cv::format("frame_%d", i); FileNode node = fs[nodeName]; if (!node.empty()) { camera_image_points.push_back(node.mat().reshape(2, 1)); visibility.at(c, i) = 255; } else { camera_image_points.push_back(cv::Mat()); visibility.at(c, i) = 0; } } fs.release(); image_points_all.push_back(camera_image_points); } } double calibrateMono(const std::vector& board_pattern, const std::vector& image_points, const cv::Size& image_size, cv::CameraModel model, int flags, Mat& K, Mat& dist) { std::vector filtered_image_points; for(size_t i = 0; i < image_points.size(); i++) { if(!image_points[i].empty()) filtered_image_points.push_back(image_points[i]); } std::vector> objPoints(filtered_image_points.size(), board_pattern); std::vector rvec, tvec; cv::Mat K1, dist1; if(model == cv::CALIB_MODEL_PINHOLE) { return cv::calibrateCamera(objPoints, filtered_image_points, image_size, K, dist, rvec, tvec, flags); } else if(model == cv::CALIB_MODEL_FISHEYE) { return cv::fisheye::calibrate(objPoints, filtered_image_points, image_size, K, dist, rvec, tvec, flags); } else { CV_Error(Error::StsBadArg, "Unsupported camera model!"); } return FLT_MAX; } void validateCameraPose(const Mat& R, Mat T, const Mat& R_gt, const Mat& T_gt, double angle_tol = 1.*M_PI/180., double pos_tol = 0.01) { double cos_r = (cv::trace(R_gt.t() * R)[0] - 1) / 2.; double angle = std::acos(std::max(std::min(cos_r, 1.), -1.)); cv::Mat dist_mat; subtract(R_gt.t() * T_gt, R.t() * T, dist_mat); double dist = cv::norm(dist_mat); CV_LOG_INFO(NULL, "rotation error: " << angle); CV_LOG_INFO(NULL, "position error: " << dist); EXPECT_NEAR(angle, 0., angle_tol); EXPECT_NEAR(dist, 0., pos_tol); } void validateAllPoses(const std::vector& Rs_gt, const std::vector& Ts_gt, const std::vector& Rs, const std::vector& Ts, double angle_tol = 1.*M_PI/180., double pos_tol = 0.01) { ASSERT_EQ(Rs_gt.size(), Ts_gt.size()); ASSERT_EQ(Rs.size(), Ts.size()); ASSERT_EQ(Rs_gt.size(), Rs.size()); const size_t num_cameras = Rs_gt.size(); for (size_t c = 1; c < num_cameras; c++) { validateCameraPose(Rs[c], Ts[c], Rs_gt[c], Ts_gt[c], angle_tol, pos_tol); } } }; TEST_F(MultiViewTest, OneLine) { const string root = cvtest::TS::ptr()->get_data_path() + "cv/cameracalibration/multiview/3cams-one-line/"; const std::vector cam_names = {"cam_0", "cam_1", "cam_3"}; const std::vector image_sizes = {{1920, 1080}, {1920, 1080}, {1920, 1080} }; std::vector models(3, cv::CALIB_MODEL_PINHOLE); double rs_1_gt_data[9] = { 0.9996914489704484, -0.01160060078752197, -0.02196435559568884, 0.012283315339906, 0.9994374509454836, 0.03120739995344806, 0.02158997497973892, -0.03146756598408248, 0.9992715673286274 }; double rs_2_gt_data[9] = { 0.9988848194142131, -0.0255827884561986, -0.03968171466355882, 0.0261796234191418, 0.999550713317242, 0.0145944792515729, 0.03929051872229011, -0.0156170561181697, 0.9991057815350362 }; double ts_1_gt_data[3] = {0.5078811293323259, 0.002753469433719865, 0.02413521839310227}; double ts_2_gt_data[3] = {1.007213763725429, 0.01645068247976361, 0.05394643957910365}; std::vector Rs_gt = { cv::Mat::eye(3, 3, CV_64FC1), cv::Mat(3, 3, CV_64FC1, rs_1_gt_data), cv::Mat(3, 3, CV_64FC1, rs_2_gt_data) }; std::vector Ts_gt = { cv::Mat::zeros(3, 1, CV_64FC1), cv::Mat(3, 1, CV_64FC1, ts_1_gt_data), cv::Mat(3, 1, CV_64FC1, ts_2_gt_data) }; const int num_frames = 96; std::vector> image_points_all; cv::Mat visibility; loadImagePoints(root, cam_names, num_frames, image_points_all, visibility); EXPECT_EQ(cam_names.size(), image_points_all.size()); for(size_t i = 0; i < cam_names.size(); i++) { EXPECT_TRUE(!image_points_all[i].empty()); } std::vector board_pattern = genAsymmetricObjectPoints(); std::vector> objPoints(num_frames, board_pattern); std::vector flagsForIntrinsics(3, CALIB_RATIONAL_MODEL); std::vector Ks, distortions, Rs, Rs_rvec, Ts; double rms = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility, models, Rs_rvec, Ts, Ks, distortions, 0, flagsForIntrinsics); CV_LOG_INFO(NULL, "RMS: " << rms); EXPECT_LE(rms, .3); Rs.resize(Rs_rvec.size()); for(int c = 0; c < 3; c++) { cv::Rodrigues(Rs_rvec[c], Rs[c]); CV_LOG_INFO(NULL, "R" << c << ":" << Rs[c]); CV_LOG_INFO(NULL, "T" << c << ":" << Ts[c]); } validateAllPoses(Rs_gt, Ts_gt, Rs, Ts); } TEST_F(MultiViewTest, OneLineInitialGuess) { const string root = cvtest::TS::ptr()->get_data_path() + "cv/cameracalibration/multiview/3cams-one-line/"; const std::vector cam_names = {"cam_0", "cam_1", "cam_3"}; const std::vector image_sizes = {{1920, 1080}, {1920, 1080}, {1920, 1080} }; std::vector models(3, cv::CALIB_MODEL_PINHOLE); double rs_1_gt_data[9] = { 0.9996914489704484, -0.01160060078752197, -0.02196435559568884, 0.012283315339906, 0.9994374509454836, 0.03120739995344806, 0.02158997497973892, -0.03146756598408248, 0.9992715673286274 }; double rs_2_gt_data[9] = { 0.9988848194142131, -0.0255827884561986, -0.03968171466355882, 0.0261796234191418, 0.999550713317242, 0.0145944792515729, 0.03929051872229011, -0.0156170561181697, 0.9991057815350362 }; double ts_1_gt_data[3] = {0.5078811293323259, 0.002753469433719865, 0.02413521839310227}; double ts_2_gt_data[3] = {1.007213763725429, 0.01645068247976361, 0.05394643957910365}; std::vector Rs_gt = { cv::Mat::eye(3, 3, CV_64FC1), cv::Mat(3, 3, CV_64FC1, rs_1_gt_data), cv::Mat(3, 3, CV_64FC1, rs_2_gt_data) }; std::vector Ts_gt = { cv::Mat::zeros(3, 1, CV_64FC1), cv::Mat(3, 1, CV_64FC1, ts_1_gt_data), cv::Mat(3, 1, CV_64FC1, ts_2_gt_data) }; const int num_frames = 96; std::vector> image_points_all; cv::Mat visibility; loadImagePoints(root, cam_names, num_frames, image_points_all, visibility); EXPECT_EQ(cam_names.size(), image_points_all.size()); for(size_t i = 0; i < cam_names.size(); i++) { EXPECT_TRUE(!image_points_all[i].empty()); } std::vector board_pattern = genAsymmetricObjectPoints(); std::vector> objPoints(num_frames, board_pattern); std::vector flagsForIntrinsics(3, CALIB_RATIONAL_MODEL); std::vector Ks, distortions; std::vector Rs(3); std::vector Ts(3); std::vector Rs_rvec(3); for(int c = 0; c < 3; c++) { Mat K, dist; double mono_rms = calibrateMono(board_pattern, image_points_all[c], image_sizes[c], cv::CALIB_MODEL_PINHOLE, cv::CALIB_RATIONAL_MODEL, K, dist); CV_LOG_INFO(NULL, "K:" << K); CV_LOG_INFO(NULL, "dist:" << dist); Ks.push_back(K); distortions.push_back(dist); CV_LOG_INFO(NULL, "Calibrate mono RMS #" << c << ": " << mono_rms); EXPECT_LE(mono_rms, .3); } const auto euler2rot = [] (double x, double y, double z) { cv::Matx33d R_x(1, 0, 0, 0, cos(x), -sin(x), 0, sin(x), cos(x)); cv::Matx33d R_y(cos(y), 0, sin(y), 0, 1, 0, -sin(y), 0, cos(y)); cv::Matx33d R_z(cos(z), -sin(z), 0, sin(z), cos(z), 0, 0, 0, 1); return cv::Mat(R_z * R_y * R_x); }; // Introduce small noise by rotating ground truth camera pose a bit Rs[0] = Rs_gt[0].clone(); Ts[0] = Ts_gt[0].clone(); double sign = 1.; for (int c = 1; c < 3; c++) { Mat noise = euler2rot(0., sign*M_PI/180., 0.); sign *= -1.; Rs[c] = noise*Rs_gt[c]; Ts[c] = Ts_gt[c].clone(); cv::Rodrigues(Rs[c], Rs_rvec[c]); } int flags = cv::CALIB_USE_EXTRINSIC_GUESS | cv::CALIB_USE_INTRINSIC_GUESS; double rms = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility, models, Rs_rvec, Ts, Ks, distortions, flags, flagsForIntrinsics); CV_LOG_INFO(NULL, "RMS: " << rms); EXPECT_LE(rms, .3); Rs.resize(Rs_rvec.size()); for(int c = 0; c < 3; c++) { cv::Rodrigues(Rs_rvec[c], Rs[c]); CV_LOG_INFO(NULL, "R" << c << ":" << Rs[c]); CV_LOG_INFO(NULL, "T" << c << ":" << Ts[c]); } validateAllPoses(Rs_gt, Ts_gt, Rs, Ts); } TEST_F(MultiViewTest, CamsToFloor) { const string root = cvtest::TS::ptr()->get_data_path() + "cv/cameracalibration/multiview/3cams-to-floor/"; const std::vector cam_names = {"cam_0", "cam_1", "cam_2"}; std::vector image_sizes = {{1920, 1080}, {1920, 1080}, {1280, 720}}; std::vector models(3, cv::CALIB_MODEL_PINHOLE); double rs_1_gt_data[9] = { -0.05217184989559624, 0.6470741242690249, -0.7606399777686852, -0.526982982144755, 0.6291523784496631, 0.5713634755748329, 0.8482729717539585, 0.4306534133065782, 0.3081730082260634 }; double rs_2_gt_data[9] = { 0.001580678474783847, -0.62542080411436, 0.7802860496231537, 0.4843796328138114, 0.683118871472744, 0.5465573883435866, -0.8748564869569847, 0.3770907387072139, 0.304020890746888 }; double ts_1_gt_data[3] = {1.064278166833888, -0.7727142268275895, 1.140555926119704}; double ts_2_gt_data[3] = {-0.9391478506021244, -1.048084838193036, 1.3973875466639}; std::vector Rs_gt = { cv::Mat::eye(3, 3, CV_64FC1), cv::Mat(3, 3, CV_64FC1, rs_1_gt_data), cv::Mat(3, 3, CV_64FC1, rs_2_gt_data) }; std::vector Ts_gt = { cv::Mat::zeros(3, 1, CV_64FC1), cv::Mat(3, 1, CV_64FC1, ts_1_gt_data), cv::Mat(3, 1, CV_64FC1, ts_2_gt_data) }; const int num_frames = 125; std::vector> image_points_all; cv::Mat visibility; loadImagePoints(root, cam_names, num_frames, image_points_all, visibility); EXPECT_EQ(cam_names.size(), image_points_all.size()); for(size_t i = 0; i < cam_names.size(); i++) { EXPECT_TRUE(!image_points_all[i].empty()); } std::vector board_pattern = genAsymmetricObjectPoints(); std::vector> objPoints(num_frames, board_pattern); std::vector flagsForIntrinsics(3, cv::CALIB_RATIONAL_MODEL); std::vector Ks, distortions, Rs, Rs_rvec, Ts; double rms = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility, models, Rs_rvec, Ts, Ks, distortions, 0, flagsForIntrinsics); CV_LOG_INFO(NULL, "RMS: " << rms); EXPECT_LE(rms, 1.); Rs.resize(Rs_rvec.size()); for(int c = 0; c < 3; c++) { cv::Rodrigues(Rs_rvec[c], Rs[c]); CV_LOG_INFO(NULL, "R" << c << ":" << Rs[c]); CV_LOG_INFO(NULL, "T" << c << ":" << Ts[c]); } validateAllPoses(Rs_gt, Ts_gt, Rs, Ts); } struct RegisterCamerasTest: public MultiViewTest { void filterPoints(const std::vector>& image_points_all, std::vector& visible_image_points1, std::vector& visible_image_points2) { for (size_t i = 0; i < std::min(image_points_all[0].size(), image_points_all[1].size()); i++) { if(!image_points_all[0][i].empty() && !image_points_all[1][i].empty()) { visible_image_points1.push_back(image_points_all[0][i]); visible_image_points2.push_back(image_points_all[1][i]); } } } }; TEST_F(RegisterCamerasTest, hetero1) { const string root = cvtest::TS::ptr()->get_data_path() + "cv/cameracalibration/multiview/3cams-hetero/"; const std::vector cam_names = {"cam_7", "cam_4"}; std::vector image_sizes = {{1920, 1080}, {2048, 2048}}; std::vector models = {cv::CALIB_MODEL_PINHOLE, cv::CALIB_MODEL_FISHEYE}; std::vector flagsForIntrinsics = {cv::CALIB_RATIONAL_MODEL, cv::CALIB_RECOMPUTE_EXTRINSIC+cv::CALIB_FIX_SKEW}; const int num_frames = 127; std::vector board_pattern = genAsymmetricObjectPoints(); double rs_1_gt_data[9] = { 0.9923998627583629, 0.1102270543935739, 0.05470382872247866, -0.05295473891691575, -0.01873572048960163, 0.9984211377990636, 0.1110779367085268, -0.9937298270945939, -0.01275628155556733 }; cv::Mat R_gt(3, 3, CV_64FC1, rs_1_gt_data); double ts_1_gt_data[3] = {0.5132123397314717, -0.345554256449513, 0.7851208074917889}; cv::Mat T_gt(3, 1, CV_64FC1, ts_1_gt_data); std::vector> image_points_all; cv::Mat visibility; loadImagePoints(root, cam_names, num_frames, image_points_all, visibility); EXPECT_EQ(cam_names.size(), image_points_all.size()); for(size_t i = 0; i < cam_names.size(); i++) { EXPECT_TRUE(!image_points_all[i].empty()); } cv::Mat K1, dist1; double rms = calibrateMono(board_pattern, image_points_all[0], image_sizes[0], models[0], flagsForIntrinsics[0], K1, dist1); CV_LOG_INFO(NULL, "Mono #1 RMS: " << rms); EXPECT_LE(rms, 1.); cv::Mat K2, dist2; rms = calibrateMono(board_pattern, image_points_all[1], image_sizes[1], models[1], flagsForIntrinsics[1], K2, dist2); CV_LOG_INFO(NULL, "Mono #2 RMS: " << rms); EXPECT_LE(rms, 1.); std::vector visible_image_points1, visible_image_points2; filterPoints(image_points_all, visible_image_points1, visible_image_points2); std::vector> object_points(visible_image_points1.size(), board_pattern); cv::Mat R, T, E, F; cv::Mat rvec_reg, tvec_reg, per_view_err; rms = registerCameras(object_points, object_points, visible_image_points1, visible_image_points2, K1, dist1, cv::CALIB_MODEL_PINHOLE, K2, dist2, cv::CALIB_MODEL_FISHEYE, R, T, E, F, rvec_reg, tvec_reg, per_view_err); CV_LOG_INFO(NULL, "Register RMS: " << rms); EXPECT_LE(rms, 1.); CV_LOG_INFO(NULL, "R:" << R); CV_LOG_INFO(NULL, "T:" << T); validateCameraPose(R, T, R_gt, T_gt); } TEST_F(RegisterCamerasTest, hetero2) { const string root = cvtest::TS::ptr()->get_data_path() + "cv/cameracalibration/multiview/3cams-hetero/"; const std::vector cam_names = {"cam_4", "cam_8"}; std::vector image_sizes = {{2048, 2048}, {1920, 1080}}; std::vector models = {cv::CALIB_MODEL_FISHEYE, cv::CALIB_MODEL_PINHOLE}; std::vector flagsForIntrinsics = { cv::CALIB_RECOMPUTE_EXTRINSIC+cv::CALIB_FIX_SKEW, cv::CALIB_RATIONAL_MODEL}; const int num_frames = 127; std::vector board_pattern = genAsymmetricObjectPoints(); double rs_1_gt_data[9] = { 0.9987381520324473, -0.03742623778583679, 0.0334870183804049, 0.03272769253311544, -0.02072052049800844, -0.9992494974588425, 0.03809201775004091, 0.999084549352801, -0.01946949994840527 }; cv::Mat R_gt(3, 3, CV_64FC1, rs_1_gt_data); double ts_1_gt_data[3] = {0.4660746974363485, 0.7703195273112146, 0.3243138654899712}; cv::Mat T_gt(3, 1, CV_64FC1, ts_1_gt_data); std::vector> image_points_all; cv::Mat visibility; loadImagePoints(root, cam_names, num_frames, image_points_all, visibility); EXPECT_EQ(cam_names.size(), image_points_all.size()); for(size_t i = 0; i < cam_names.size(); i++) { EXPECT_TRUE(!image_points_all[i].empty()); } cv::Mat K1, dist1; double rms = calibrateMono(board_pattern, image_points_all[0], image_sizes[0], models[0], flagsForIntrinsics[0], K1, dist1); CV_LOG_INFO(NULL, "Mono #1 RMS: " << rms); EXPECT_LE(rms, 1.); cv::Mat K2, dist2; rms = calibrateMono(board_pattern, image_points_all[1], image_sizes[1], models[1], flagsForIntrinsics[1], K2, dist2); CV_LOG_INFO(NULL, "Mono #2 RMS: " << rms); EXPECT_LE(rms, 1.); std::vector visible_image_points1, visible_image_points2; filterPoints(image_points_all, visible_image_points1, visible_image_points2); std::vector> object_points(visible_image_points1.size(), board_pattern); cv::Mat R, T, E, F; cv::Mat rvec_reg, tvec_reg, per_view_err; rms = registerCameras(object_points, object_points, visible_image_points1, visible_image_points2, K1, dist1, cv::CALIB_MODEL_FISHEYE, K2, dist2, cv::CALIB_MODEL_PINHOLE, R, T, E, F, rvec_reg, tvec_reg, per_view_err); CV_LOG_INFO(NULL, "Register RMS: " << rms); EXPECT_LE(rms, 1.); CV_LOG_INFO(NULL, "R:" << R); CV_LOG_INFO(NULL, "T:" << T); validateCameraPose(R, T, R_gt, T_gt); } }}