/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "../op_cuda.hpp" #include "../op_inf_engine.hpp" #include "../ie_ngraph.hpp" #include "../op_vkcom.hpp" #include "../op_webnn.hpp" #include "../op_timvx.hpp" #include "../op_cann.hpp" #include #include #ifdef HAVE_OPENCL #include "opencl_kernels_dnn.hpp" #endif #ifdef HAVE_CUDA #include "../cuda4dnn/primitives/permute.hpp" using namespace cv::dnn::cuda4dnn; #endif namespace cv { namespace dnn { class PermuteLayerImpl CV_FINAL : public PermuteLayer { public: void checkNeedForPermutation() { _needsPermute = false; for (size_t i = 0; i < _numAxes; ++i) { if (_order[i] != i) { _needsPermute = true; break; } } } PermuteLayerImpl(const LayerParams ¶ms) : _count(0), _needsPermute(false), _numAxes(0) { if (!params.has("order")) { return; } DictValue paramOrder = params.get("order"); _numAxes = paramOrder.size(); for (size_t i = 0; i < _numAxes; i++) { int currentOrder = paramOrder.get(i); if (currentOrder < 0 || currentOrder > _numAxes) { CV_Error(Error::StsBadArg, format("Orders of dimensions in Permute layer parameter" "must be in [0...%zu]", _numAxes - 1)); } if (std::find(_order.begin(), _order.end(), currentOrder) != _order.end()) { CV_Error(Error::StsBadArg, "Permute layer parameter contains duplicated orders."); } _order.push_back(currentOrder); } zeropoint = params.get("zeropoints", 0); scale = params.get("scales", 1.0f); setParamsFrom(params); checkNeedForPermutation(); } virtual bool supportBackend(int backendId) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { if (preferableTarget == DNN_TARGET_CPU) return _order.size() <= 4 || !isArmComputePlugin(); return true; } #endif #ifdef HAVE_TIMVX if (backendId == DNN_BACKEND_TIMVX && haveTimVX()) { int len = this->type.length(); if (len <= 4) return false; if (this->type.substr(len - 4) == "Int8") return true; else return false; } #endif return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_WEBNN || (backendId == DNN_BACKEND_VKCOM && haveVulkan()) || backendId == DNN_BACKEND_CANN; } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { if(!_needsPermute) { Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); return true; } CV_Assert(inputs.size() > 0); CV_Assert((int)_numAxes == inputs[0].size()); MatShape shapeBefore = inputs[0], shapeAfter; for (size_t i = 0; i < _numAxes; i++) { shapeAfter.push_back(shapeBefore[_order[i]]); } outputs.clear(); for (size_t i = 0; i < inputs.size(); i++) { CV_Assert(total(inputs[i]) == total(shapeAfter)); outputs.push_back(shapeAfter); } return false; } void computeStrides(const MatShape &shapeBefore, const MatShape &shapeAfter) { _oldStride.resize(_numAxes); _newStride.resize(_numAxes); _oldStride[_numAxes - 1] = 1; _newStride[_numAxes - 1] = 1; for(int i = _numAxes - 2; i >= 0; i--) { _oldStride[i] = _oldStride[i + 1] * shapeBefore[i + 1]; _newStride[i] = _newStride[i + 1] * shapeAfter[i + 1]; } _count = _oldStride[0] * shapeBefore[0]; } void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { if(!_needsPermute) { return; } std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); CV_Assert(inputs.size() > 0); const Mat& inp0 = inputs[0]; CV_Assert((int)_numAxes == inp0.dims); computeStrides(shape(inputs[0]), shape(outputs[0])); #ifdef HAVE_OPENCL uorder.release(); uold_stride.release(); unew_stride.release(); #endif } template class PermuteInvoker : public ParallelLoopBody { public: const Mat* inp; Mat* out; const std::vector* order; int nstripes; static void run(const Mat& inp, Mat& out, const std::vector& order, int nstripes) { PermuteInvoker p; p.inp = &inp; p.out = &out; p.order = ℴ p.nstripes = nstripes; CV_Assert( out.size[0] == inp.size[order[0]] && out.size[1] == inp.size[order[1]] && out.size[2] == inp.size[order[2]] && out.size[3] == inp.size[order[3]]); parallel_for_(Range(0, nstripes), p, nstripes); } PermuteInvoker() : inp(0), out(0), order(0), nstripes(0) {} void operator()(const Range& r) const CV_OVERRIDE { int n0 = out->size[0], n1 = out->size[1], n2 = out->size[2], n3 = out->size[3]; size_t orows = (size_t)n0*n1*n2; size_t stripeSize = (orows + nstripes - 1)/nstripes; size_t stripeStart = r.start*stripeSize; size_t stripeEnd = std::min(r.end*stripeSize, orows); const size_t esz = sizeof(T); size_t ostep0 = out->step[0]/esz, ostep1 = out->step[1]/esz, ostep2 = out->step[2]/esz; const size_t* ord = &order->at(0); size_t istep0 = inp->step[ord[0]]/esz, istep1 = inp->step[ord[1]]/esz, istep2 = inp->step[ord[2]]/esz, istep3 = inp->step[ord[3]]/esz; size_t val = stripeStart; int i2 = (int)(val % n2); val /= n2; int i1 = (int)(val % n1); int i0 = (int)(val / n1); const T* inptr_orig = inp->ptr(); T* outptr_orig = out->ptr(); for( size_t ofs = stripeStart; ofs < stripeEnd; ofs++ ) { const T* inptr = inptr_orig + i0*istep0 + i1*istep1 + i2*istep2; T* outptr = outptr_orig + i0*ostep0 + i1*ostep1 + i2*ostep2; for( int i3 = 0; i3 < n3; i3++ ) outptr[i3] = inptr[i3*istep3]; if( ++i2 >= n2 ) { i2 = 0; if( ++i1 >= n1 ) { i1 = 0; if( ++i0 >= n0 ) break; } } } } }; #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) { std::vector inputs; std::vector outputs; inps.getUMatVector(inputs); outs.getUMatVector(outputs); if (!_needsPermute) return false; if (uorder.empty()) { std::vector orderVec(_order.begin(), _order.end());; Mat morder(1, orderVec.size(), CV_32SC1, &orderVec[0]); std::vector oldStrideVec(_oldStride.begin(), _oldStride.end()); Mat mold_stride(1, _oldStride.size(), CV_32SC1, &oldStrideVec[0]); std::vector newStrideVec(_newStride.begin(), _newStride.end()); Mat mnew_stride(1, newStrideVec.size(), CV_32SC1, &newStrideVec[0]); morder.copyTo(uorder); mold_stride.copyTo(uold_stride); mnew_stride.copyTo(unew_stride); } bool use_half = (inps.depth() == CV_16S); String opts = format("-DDtype=%s", use_half ? "half" : "float"); for (size_t i = 0; i < inputs.size(); i++) { ocl::Kernel kernel("permute", ocl::dnn::permute_oclsrc, opts); kernel.set(0, (int)_count); kernel.set(1, ocl::KernelArg::PtrReadOnly(inputs[i])); kernel.set(2, ocl::KernelArg::PtrReadOnly(uorder)); kernel.set(3, ocl::KernelArg::PtrReadOnly(uold_stride)); kernel.set(4, ocl::KernelArg::PtrReadOnly(unew_stride)); kernel.set(5, (int)_numAxes); kernel.set(6, ocl::KernelArg::PtrWriteOnly(outputs[i])); if (!kernel.run(1, &_count, NULL, false)) return false; } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && inputs_arr.depth() != CV_8S, forward_ocl(inputs_arr, outputs_arr, internals_arr)) if (inputs_arr.depth() == CV_16S) { forward_fallback(inputs_arr, outputs_arr, internals_arr); return; } std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); size_t k, ninputs = inputs.size(); if(!_needsPermute) { for (k = 0; k < ninputs; k++) { CV_Assert(outputs[k].total() == inputs[k].total()); if (outputs[k].data != inputs[k].data) inputs[k].copyTo(outputs[k]); } } else { size_t i, j, count = _count, numAxes = _numAxes; const size_t* newStride = &_newStride[0]; const size_t* oldStride = &_oldStride[0]; const size_t* order = &_order[0]; for (k = 0; k < ninputs; k++) { const Mat& inp = inputs[k]; Mat& out = outputs[k]; CV_Assert(inp.dims == numAxes && inp.size == inputs[0].size); CV_Assert(out.dims == numAxes && out.size == outputs[0].size); CV_Assert(inp.isContinuous() && out.isContinuous()); // CV_Assert(inp.type() == CV_32F && out.type() == CV_32F); if( numAxes == 4 ) { int nstripes = getNumThreads(); if (inp.type() == CV_8S) PermuteInvoker::run(inp, out, _order, nstripes); else PermuteInvoker::run(inp, out, _order, nstripes); } else { if (inp.type() == CV_8S) { const int8_t *srcData = inp.ptr(); int8_t *dstData = out.ptr(); for (i = 0; i < count; ++i) { size_t oldPosition = 0; size_t newPosition = i; for (j = 0; j < numAxes; ++j) { oldPosition += (newPosition / newStride[j]) * oldStride[order[j]]; newPosition %= newStride[j]; } dstData[i] = srcData[oldPosition]; } } else { const float *srcData = inp.ptr(); float *dstData = out.ptr(); for (i = 0; i < count; ++i) { size_t oldPosition = 0; size_t newPosition = i; for (j = 0; j < numAxes; ++j) { oldPosition += (newPosition / newStride[j]) * oldStride[order[j]]; newPosition %= newStride[j]; } dstData[i] = srcData[oldPosition]; } } } } } } #ifdef HAVE_CANN virtual Ptr initCann(const std::vector > &inputs, const std::vector > &outputs, const std::vector >& nodes) CV_OVERRIDE { auto x = inputs[0].dynamicCast(); // create operator auto op = std::make_shared(name); // set attributes op->set_attr_order(ge::Operator::OpListInt( _order.begin(), _order.end() )); // set inputs // set inputs : x auto op_x = nodes[0].dynamicCast()->getOp(); op->set_input_x_by_name(*op_x, x->name.c_str()); auto x_desc = x->getTensorDesc(); op->update_input_desc_x(*x_desc); // set outputs auto output_y_desc = std::make_shared(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); op->update_output_desc_y(*output_y_desc); return Ptr(new CannBackendNode(op)); } #endif // HAVE_CANN #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE { auto& ieInpNode = nodes[0].dynamicCast()->node; std::vector order(_order.begin(), _order.end()); auto tr_axes = std::make_shared(ngraph::element::i64, ngraph::Shape({order.size()}), order.data()); auto transpose = std::make_shared(ieInpNode, tr_axes); return Ptr(new InfEngineNgraphNode(transpose)); } #endif // HAVE_DNN_NGRAPH #ifdef HAVE_WEBNN virtual Ptr initWebnn(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE { Ptr node = nodes[0].dynamicCast(); auto& webnnInpOperand = node->operand; auto& webnnGraphBuilder = node->net->builder; std::vector permutation(_order.begin(), _order.end()); ml::TransposeOptions options; options.permutation = permutation.data(); options.permutationCount = permutation.size(); auto operand = webnnGraphBuilder.Transpose(webnnInpOperand, &options); return Ptr(new WebnnBackendNode(operand)); } #endif #ifdef HAVE_CUDA Ptr initCUDA( void *context_, const std::vector>& inputs, const std::vector>& outputs ) override { auto context = reinterpret_cast(context_); return make_cuda_node(preferableTarget, std::move(context->stream), _order); } #endif #ifdef HAVE_VULKAN virtual Ptr initVkCom(const std::vector > &input) CV_OVERRIDE { CV_Assert(!_order.empty()); std::shared_ptr op(new vkcom::OpPermute(_order)); return Ptr(new VkComBackendNode(input, op)); } #endif // HAVE_VULKAN #ifdef HAVE_TIMVX virtual Ptr initTimVX(void* timVXInfo_, const std::vector > &inputsWrapper, const std::vector > &outputsWrapper, bool isLast) CV_OVERRIDE { // tvGraph Initialization. auto timVxInfo = reinterpret_cast(timVXInfo_); CV_Assert(timVxInfo); Ptr tvGraph = timVxInfo->getGraph(); CV_Assert(tvGraph); Ptr graph = tvGraph->graph; std::vector inputsIndex, outputsIndex; int input_index = -1, output_index = -1; if (outputsWrapper.size() != 1) // only work for single outputBlob return Ptr(); // Input Ptr inputWrapper = inputsWrapper[0].dynamicCast(); if (inputWrapper->isTensor()) { input_index = tvGraph->getTensorIndex(inputWrapper->getTensor()); if (input_index == -1) { // Copy To New inputWrapper Mat tmp = inputWrapper->getMat(); inputWrapper = Ptr(new TimVXBackendWrapper(tmp)); } } if (!inputWrapper->isTensor()) { Ptr tvInputQuant = Ptr( new tim::vx::Quantization(tim::vx::QuantType::ASYMMETRIC, scale, zeropoint)); inputWrapper->createTensor(graph,tim::vx::TensorAttribute::INPUT, tvInputQuant); input_index = tvGraph->addWrapper(inputWrapper); } inputsIndex.push_back(input_index); //Output Ptr outputWrapper = outputsWrapper[0].dynamicCast(); // output has the same quantized attrib. Ptr outputQuant = inputWrapper->getTensorQuantization(); if (isLast) { auto shapeType = getShapeTypeFromMat(outputWrapper->getMat()); // For Graph Output tensor, we need to set tensor shape before createTensor(). outputWrapper->setTensorShape(shapeType); outputWrapper->createTensor(graph, tim::vx::TensorAttribute::OUTPUT, outputQuant); } else { outputWrapper->createTensor(graph, tim::vx::TensorAttribute::TRANSIENT, outputQuant); } output_index = tvGraph->addWrapper(outputWrapper); outputsIndex.push_back(output_index); std::vector tvOrder; if (getOrderWHCN(tvOrder)) { std::shared_ptr tvPermute = graph->CreateOperation(tvOrder); Ptr tvBackendNode = new TimVXBackendNode(tvGraph, tvPermute, inputsIndex, outputsIndex); return tvBackendNode; } else { return Ptr(); } } #endif // HAVE_TIMVX virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE { return true; } // convert OpenCV NCHW order to WHCN order. bool getOrderWHCN(std::vector& orderWHCN) { std::map lookup; int orderLen = _order.size(); if (orderLen <2) return false; orderWHCN.assign(_order.begin(), _order.end()); if (orderLen == 2) { return true; } else if (orderLen >= 3) { for (int i = 0; i < orderLen; i++) { lookup[i] = orderLen - i - 1; } for (int i = 0; i < orderLen; i++) { orderWHCN[i] = lookup[_order[i]]; } std::reverse(orderWHCN.begin(), orderWHCN.end()); return true; } else return false; } size_t _count; std::vector _order; std::vector _oldDimensionSize; std::vector _newDimensionSize; std::vector _oldStride; std::vector _newStride; bool _needsPermute; #ifdef HAVE_OPENCL UMat uorder, uold_stride, unew_stride; #endif size_t _numAxes; int zeropoint; float scale; }; Ptr PermuteLayer::create(const LayerParams ¶ms) { return Ptr(new PermuteLayerImpl(params)); } } }