#!/usr/bin/env python import sys, os, os.path, glob, math, cv2, sft from datetime import datetime from optparse import OptionParser import re import numpy as np def extractPositive(f, path, opath, octave, min_possible): newobj = re.compile("^lbl=\'(\w+)\'\s+str=(\d+)\s+end=(\d+)\s+hide=0$") pos = re.compile("^pos\s=(\[[((\d+\.+\d*)|\s+|\;)]*\])$") occl = re.compile("^occl\s*=(\[[0-1|\s]*\])$") whole_mod_w = int(64 * octave) + 2 * int(20 * octave) whole_mod_h = int(128 * octave) + 2 * int(20 * octave) goNext = 0 start = 0 end = 0 person_id = -1; boxes = [] occls = [] for l in f: m = newobj.match(l) if m is not None: if m.group(1) == "person": goNext = 1 start = int(m.group(2)) end = int(m.group(3)) person_id = person_id + 1 print m.group(1), person_id, start, end else: goNext = 0 else: m = pos.match(l) if m is not None: if not goNext: continue strarr = re.sub(r"\s", ", ", re.sub(r"\;\s+(?=\])", "]", re.sub(r"\;\s+(?!\])", "],[", re.sub(r"(\[)(\d)", "\\1[\\2", m.group(1))))) boxes = eval(strarr) else: m = occl.match(l) if m is not None: occls = eval(re.sub(r"\s+(?!\])", ",", m.group(1))) if len(boxes) > 0 and len(boxes) == len(occls): for idx, box in enumerate(boxes): if occls[idx] == 1: continue x = box[0] y = box[1] w = box[2] h = box[3] id = int(start) - 1 + idx file = os.path.join(path, "I0%04d.jpg" % id) if (start + id) >= end or w < 10 or h < min_possible: continue mat = cv2.imread(file) mat_h, mat_w, _ = mat.shape # let default height of person be 96. scale = h / float(96) rel_scale = scale / octave d_w = whole_mod_w * rel_scale d_h = whole_mod_h * rel_scale tb = (d_h - h) / 2.0 lr = (d_w - w) / 2.0 x = int(round(x - lr)) y = int(round(y - tb)) w = int(round(w + lr * 2.0)) h = int(round(h + tb * 2.0)) inner = [max(5, x), max(5, y), min(mat_w - 5, x + w), min(mat_h - 5, y + h) ] cropped = mat[inner[1]:inner[3], inner[0]:inner[2], :] top = int(max(0, 0 - y)) bottom = int(max(0, y + h - mat_h)) left = int(max(0, 0 - x)) right = int(max(0, x + w - mat_w)) if top < -d_h / 4.0 or bottom > d_h / 4.0 or left < -d_w / 4.0 or right > d_w / 4.0: continue cropped = cv2.copyMakeBorder(cropped, top, bottom, left, right, cv2.BORDER_REPLICATE) resized = sft.resize_sample(cropped, whole_mod_w, whole_mod_h) flipped = cv2.flip(resized, 1) cv2.imshow("resized", resized) c = cv2.waitKey(20) if c == 27: exit(0) fname = re.sub(r"^.*\/(set[0-1]\d)\/(V0\d\d)\.(seq)/(I\d+).jpg$", "\\1_\\2_\\4", file) fname = os.path.join(opath, fname + "_%04d." % person_id + "png") fname_fl = os.path.join(opath, fname + "_mirror_%04d." % person_id + "png") try: cv2.imwrite(fname, resized) cv2.imwrite(fname_fl, flipped) except: print "something wrong... go next." pass if __name__ == "__main__": parser = OptionParser() parser.add_option("-i", "--input", dest="input", metavar="DIRECTORY", type="string", help="Path to the Caltech dataset folder.") parser.add_option("-d", "--output-dir", dest="output", metavar="DIRECTORY", type="string", help="Path to store data", default=".") parser.add_option("-o", "--octave", dest="octave", type="float", help="Octave for a dataset to be scaled", default="0.5") parser.add_option("-m", "--min-possible", dest="min_possible", type="int", help="Minimum possible height for positive.", default="64") (options, args) = parser.parse_args() if not options.input: parser.error("Caltech dataset folder is required.") opath = os.path.join(options.output, datetime.now().strftime("raw_ge64_cr_mirr_ts" + "-%Y-%m-%d-%H-%M-%S")) os.mkdir(opath) gl = glob.iglob( os.path.join(options.input, "set[0][0]/V0[0-9][0-9].txt")) for each in gl: path, ext = os.path.splitext(each) path = path + ".seq" print path extractPositive(open(each), path, opath, options.octave, options.min_possible)