/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2008, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { struct KeypointResponseGreaterThanOrEqualToThreshold { KeypointResponseGreaterThanOrEqualToThreshold(float _value) : value(_value) { } inline bool operator()(const KeyPoint& kpt) const { return kpt.response >= value; } float value; }; struct KeypointResponseGreater { inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const { return kp1.response > kp2.response; } }; // takes keypoints and culls them by the response void KeyPointsFilter::retainBest(std::vector& keypoints, int n_points) { //this is only necessary if the keypoints size is greater than the number of desired points. if( n_points >= 0 && keypoints.size() > (size_t)n_points ) { if (n_points==0) { keypoints.clear(); return; } //first use nth element to partition the keypoints into the best and worst. std::nth_element(keypoints.begin(), keypoints.begin() + n_points - 1, keypoints.end(), KeypointResponseGreater()); //this is the boundary response, and in the case of FAST may be ambiguous float ambiguous_response = keypoints[n_points - 1].response; //use std::partition to grab all of the keypoints with the boundary response. std::vector::const_iterator new_end = std::partition(keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreaterThanOrEqualToThreshold(ambiguous_response)); //resize the keypoints, given this new end point. nth_element and partition reordered the points inplace keypoints.resize(new_end - keypoints.begin()); } } struct RoiPredicate { RoiPredicate( const Rect& _r ) : r(_r) {} bool operator()( const KeyPoint& keyPt ) const { return !r.contains( keyPt.pt ); } Rect r; }; void KeyPointsFilter::runByImageBorder( std::vector& keypoints, Size imageSize, int borderSize ) { if( borderSize > 0) { if (imageSize.height <= borderSize * 2 || imageSize.width <= borderSize * 2) keypoints.clear(); else keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(), RoiPredicate(Rect(Point(borderSize, borderSize), Point(imageSize.width - borderSize, imageSize.height - borderSize)))), keypoints.end() ); } } struct SizePredicate { SizePredicate( float _minSize, float _maxSize ) : minSize(_minSize), maxSize(_maxSize) {} bool operator()( const KeyPoint& keyPt ) const { float size = keyPt.size; return (size < minSize) || (size > maxSize); } float minSize, maxSize; }; void KeyPointsFilter::runByKeypointSize( std::vector& keypoints, float minSize, float maxSize ) { CV_Assert( minSize >= 0 ); CV_Assert( maxSize >= 0); CV_Assert( minSize <= maxSize ); keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(), SizePredicate(minSize, maxSize)), keypoints.end() ); } class MaskPredicate { public: MaskPredicate( const Mat& _mask ) : mask(_mask) {} bool operator() (const KeyPoint& key_pt) const { return mask.at( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) == 0; } private: const Mat mask; MaskPredicate& operator=(const MaskPredicate&); }; void KeyPointsFilter::runByPixelsMask( std::vector& keypoints, const Mat& mask ) { CV_INSTRUMENT_REGION(); if( mask.empty() ) return; keypoints.erase(std::remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end()); } struct KeyPoint_LessThan { KeyPoint_LessThan(const std::vector& _kp) : kp(&_kp) {} bool operator()(int i, int j) const { const KeyPoint& kp1 = (*kp)[i]; const KeyPoint& kp2 = (*kp)[j]; if( kp1.pt.x != kp2.pt.x ) return kp1.pt.x < kp2.pt.x; if( kp1.pt.y != kp2.pt.y ) return kp1.pt.y < kp2.pt.y; if( kp1.size != kp2.size ) return kp1.size > kp2.size; if( kp1.angle != kp2.angle ) return kp1.angle < kp2.angle; if( kp1.response != kp2.response ) return kp1.response > kp2.response; if( kp1.octave != kp2.octave ) return kp1.octave > kp2.octave; if( kp1.class_id != kp2.class_id ) return kp1.class_id > kp2.class_id; return i < j; } const std::vector* kp; }; void KeyPointsFilter::removeDuplicated( std::vector& keypoints ) { int i, j, n = (int)keypoints.size(); std::vector kpidx(n); std::vector mask(n, (uchar)1); for( i = 0; i < n; i++ ) kpidx[i] = i; std::sort(kpidx.begin(), kpidx.end(), KeyPoint_LessThan(keypoints)); for( i = 1, j = 0; i < n; i++ ) { KeyPoint& kp1 = keypoints[kpidx[i]]; KeyPoint& kp2 = keypoints[kpidx[j]]; if( kp1.pt.x != kp2.pt.x || kp1.pt.y != kp2.pt.y || kp1.size != kp2.size || kp1.angle != kp2.angle ) j = i; else mask[kpidx[i]] = 0; } for( i = j = 0; i < n; i++ ) { if( mask[i] ) { if( i != j ) keypoints[j] = keypoints[i]; j++; } } keypoints.resize(j); } struct KeyPoint12_LessThan { bool operator()(const KeyPoint &kp1, const KeyPoint &kp2) const { if( kp1.pt.x != kp2.pt.x ) return kp1.pt.x < kp2.pt.x; if( kp1.pt.y != kp2.pt.y ) return kp1.pt.y < kp2.pt.y; if( kp1.size != kp2.size ) return kp1.size > kp2.size; if( kp1.angle != kp2.angle ) return kp1.angle < kp2.angle; if( kp1.response != kp2.response ) return kp1.response > kp2.response; if( kp1.octave != kp2.octave ) return kp1.octave > kp2.octave; return kp1.class_id > kp2.class_id; } }; void KeyPointsFilter::removeDuplicatedSorted( std::vector& keypoints ) { int i, j, n = (int)keypoints.size(); if (n < 2) return; std::sort(keypoints.begin(), keypoints.end(), KeyPoint12_LessThan()); for( i = 0, j = 1; j < n; ++j ) { const KeyPoint& kp1 = keypoints[i]; const KeyPoint& kp2 = keypoints[j]; if( kp1.pt.x != kp2.pt.x || kp1.pt.y != kp2.pt.y || kp1.size != kp2.size || kp1.angle != kp2.angle ) { keypoints[++i] = keypoints[j]; } } keypoints.resize(i + 1); } }